Abstract:
An eyepiece includes a mechanical frame adapted to secure a lens and an image source facility above the lens. The image source facility includes an LED, a planar illumination facility and a reflective display. The planar illumination facility converts a light beam from the LED received on a side of the planar illumination facility into a top emitting planar light source, uniformly illuminates the reflective display, and is substantially transmissive to allow reflected light to pass through towards a beam splitter. The beam splitter is positioned to receive the image light and to reflect a portion onto a mirrored surface. The mirrored surface is positioned and shaped to reflect the image light into an eye of a user of the eyepiece thereby providing an image within a field of view, the mirrored surface further adapted to be partially transmissive within an area of image reflectance.
Abstract:
This disclosure concerns an interactive head-mounted eyepiece with an integrated processor for handling content for display and an integrated image source for introducing the content to an optical assembly through which the user views a surrounding environment and the displayed content, wherein the optical assembly comprises a light transmissive illumination system and an LED lighting system coupled to a light transmissive illumination system of the optical assembly. A grating of the illumination system directs light from the LED lighting system to uniformly irradiate a reflective image display to produce an image that is reflected through the illumination system to provide the displayed content to the user.
Abstract:
A method and device for adapting a display image on a hand-held portable wireless display and digital capture device. The device includes a camera for capturing a digital video and/or still image of a user, means for adjusting the captured digital image in response to poor image capture angle of said image capture device so as to create a modified captured digital image; and means for transmitting said modified captured digital image over a wireless communication network to a second hand-held portable wireless display and digital capture device.
Abstract:
A method of producing a digital video with reduced motion blur or increased brightness, including capturing a digital video using an exposure time that reduces image blur; selecting a first series of sequential images from the digital video capture; combining pixel values of said images to produce a first intermediate image that is brighter than each of the selected sequential images; choosing and processing a reference image to create a second intermediate image that is less blurry than the first intermediate image; identifying moving regions among the selected sequential images; replacing pixel values of moving regions in the first intermediate image with corresponding pixel values from the second intermediate image to produce a first digital video image having reduced motion blur or increased brightness; and repeating these steps for a second series of sequential images that includes at least one image from the first series of sequential images.
Abstract:
A system and method for providing informational labels with perceived depth in the field of view of a user of a head mounted display device. In one embodiment, the method includes determining a physical location of the user and the head mounted display device, and identifying and determining a distance from the user to one or more objects of interest in the user's field of view. Using the distance from the user for each object, one can calculate a disparity value for viewing each object. The processor of the head mounted device may gather information concerning each of the objects in which the user is interested. The head mounted display device then provides a label for each of the objects and for each eye of the user, and, using the disparity values, places the labels within the field of view of the user.
Abstract:
This disclosure concerns an interactive head-mounted eyepiece with an integrated processor for handling content for display and an integrated image source for introducing the content to an optical assembly through which the user views a surrounding environment and the displayed content. The optical assembly includes absorptive polarizers or anti-reflective coatings to reduce stray light.
Abstract:
This disclosure concerns an interactive head-mounted eyepiece with an integrated processor for handling content for display and an integrated image source for introducing the content to an optical assembly through which the user views a surrounding environment and the displayed content, wherein the image source comprises a lighting system that directs light from a light source to a curved polarizing film that reflects a portion of the light to a reflective image display. The ratio of the height of the curved polarizing film to the width of the reflective image display is less than 1:1.
Abstract:
A video communication system and method for operating a video communication system are provided. The video communication system has a video communication device, having an image display device and at least one image capture device, wherein the at least one image capture device acquires video images of a local environment and an individual therein, according to defined video capture settings, an audio system having an audio emission device and an audio capture device; and a computer operable to interact with a contextual interface, a privacy interface, an image processor, and a communication controller to enable a communication event including at least one video scene in which outgoing video images are sent to a remote site. Wherein the contextual interface includes scene analysis algorithms for identifying potential scene transitions and capture management algorithms for providing changes in video capture settings appropriate to any identified scene transitions; and wherein the privacy interface provides privacy settings to control the capture, transmission, display, or recording of video image content from the local environment.
Abstract:
This disclosure concerns an interactive head-mounted eyepiece with an integrated processor for handling content for display and an integrated image source for introducing the content to an optical assembly through which the user views a surrounding environment and the displayed content. An integrated movement detection facility may be adapted to detect movements of the head-mounted eyepiece when worn by the user. The integrated processor may determine a type of movement and reduce the appearance of the displayed content based on the type of movement.
Abstract:
A sensor module for an image capture device including an image sensor and a filter system, the image capture device having a high resolution mode of operation and one or more lower resolution modes of operation; the filter system includes an adjustable spatial filter associated with the optical path of the image capture device having an adjustable optical structure which in response to a first signal causes the adjustable spatial filter to be effective in a high resolution mode of operation and in response to a second signal causes the adjustable spatial filter to be effective in a lower resolution mode of operation.