摘要:
Improved systems and methods are provided for identifying financial relationships. In particular, financial relationships may be identified by associating tradelines with one or more people who sign or co-sign on the tradeline. In various embodiments a method is provided comprising, receiving, at a computer-based system for credit data analysis comprising a processor and a tangible, non-transitory memory, credit reporting data relating to a tradeline, parsing, by the computer-based system, the credit reporting data to yield primary debtor data and secondary debtor data, and linking, by the computer-based system, the tradeline with the primary debtor data and the secondary debtor data.
摘要:
Improved systems and methods are provided for identifying financial relationships. In particular, financial relationships may be identified by associating tradelines with one or more people who sign or co-sign on the tradeline. In various embodiments a method is provided comprising, receiving, at a computer-based system for credit data analysis comprising a processor and a tangible, non-transitory memory, credit reporting data relating to a tradeline, parsing, by the computer-based system, the credit reporting data to yield primary debtor data and secondary debtor data, and linking, by the computer-based system, the tradeline with the primary debtor data and the secondary debtor data.
摘要:
Improved systems and methods are provided for identifying financial relationships. In particular, financial relationships may be identified by associating tradelines with one or more people who sign or co-sign on the tradeline. In various embodiments a method is provided comprising, receiving, at a computer-based system for credit data analysis comprising a processor and a tangible, non-transitory memory, credit reporting data relating to a tradeline, parsing, by the computer-based system, the credit reporting data to yield primary debtor data and secondary debtor data and linking, by the computer-based system, the tradeline with the primary debtor data and the secondary debtor data.
摘要:
Improved systems and methods are provided for identifying financial relationships. In particular, financial relationships may be identified by associating tradelines with one or more people who sign or co-sign on the tradeline. In various embodiments a method is provided comprising, receiving, at a computer-based system for credit data analysis comprising a processor and a tangible, non-transitory memory, credit reporting data relating to a tradeline, parsing, by the computer-based system, the credit reporting data to yield primary debtor data and secondary debtor data, and linking, by the computer-based system, the tradeline with the primary debtor data and the secondary debtor data.
摘要:
Improved systems and methods are provided for identifying financial relationships. In particular, financial relationships may be identified by associating tradelines with one or more people who sign or co-sign on the tradeline. In various embodiments a method is provided comprising, receiving, at a computer-based system for credit data analysis comprising a processor and a tangible, non-transitory memory, credit reporting data relating to a tradeline, parsing, by the computer-based system, the credit reporting data to yield primary debtor data and secondary debtor data, and linking, by the computer-based system, the tradeline with the primary debtor data and the secondary debtor data.
摘要:
Commercial size of spending wallet (“CSoSW”) is the total business spend of a business including cash but excluding bartered items. Commercial share of wallet (“CSoW”) is the portion of the spending wallet that is captured by a particular financial company. A modeling approach utilizes various data sources to provide outputs that describe a company's spend capacity. Online marketplaces that allow small businesses to advertise their services can use this CSoW/CSoSW modeling approach to provide a rating that gives an indication of the business prospects of the vendors listed on their sites. Further, such marketplaces can combine this information with their own internal analytics to provide a single holistic rating.
摘要:
The spend capacity of a consumer typically increases as the number of consumers in the household increases, since the consumer can draw on the spending power of other consumers in the household. The size of wallet of the household is thus a better indicator of the consumer's spend capacity than an individual size of wallet. All consumers in a given household can be aggregated based on, for example, their address of record. Duplicate tradelines within each household are removed from consideration in a size of wallet estimate. A spend capacity is then estimated for each tradeline using calculations derived from a consumer behavior model. The spend capacities for all tradelines in the household are combined to determine a household size of wallet. Each consumer in the household is then tagged with the household size of wallet, rather than their individual size of wallet,
摘要:
Commercial size of spending wallet (“SoSW”) is the total business spend of a business including cash but excluding bartered items. Commercial share of wallet (“SoW”) is the portion of the spending wallet that is captured by a particular financial company. Commercial SoW is a modeling approach that utilizes various data sources to provide outputs that describe a company's spend capacity. These outputs can be appended to data profiles of customers and prospects and can be utilized to support decisions involving prospecting, new account evaluation, and customer management across the lifecycle. Company financial statements are utilized to identify and calculate total business spend of a company that could be transacted using a commercial credit card. A spend-like regression model may then be developed to estimate annual commercial SoSW value for customers and prospects within a credit network.
摘要:
Commercial size of spending wallet (“CSoSW”) is the total business spend of a business including cash but excluding bartered items. Commercial share of wallet (“CSoW”) is the portion of the spending wallet that is captured by a particular financial company. A modeling approach utilizes various data sources to provide outputs that describe a company's spend capacity. A mutual fund rating company can use this CSoW/CSoSW modeling approach to predict the performance of funds that invest in a particular industry or sector. In addition, since mutual funds often provide guidelines for selecting stocks, rating companies can use this modeling approach to predict the performance of companies in a fund's portfolio.
摘要:
Share of Wallet (“SOW”) is a modeling approach that utilizes various data sources to provide outputs that describe a consumers spending capability, tradeline history including balance transfers, and balance information. These outputs can be appended to data profiles of customers and prospects and can be utilized to support decisions involving prospecting, new applicant evaluation, and customer management across the lifecycle. The outputs can be used as attributes to consider in developing a credit bureau scorecard.