摘要:
Water-based mud filtrate concentration in a downhole fluid sample drawn from the borehole of an oil well is assessed. To measure water-based mud filtrate concentration, a water-based mud having a water-soluble fluorescent dye tracer is pumped into the borehole; sample fluid from a selected downhole location is pumped through a downhole flow line having a window; sample fluid flowing in an excitation region of the downhole flow line is illuminated through the window with fluorescence excitation light; and fluorescence emission from the excitation region is measured to produce a measured value. The measured value represents the fraction of water-based mud filtrate in the sample fluid. A calibration value is determined representing 100% water-based mud filtrate. A method for validating a sample of connate water as having an acceptably low WBM filtrate contamination tests for validation downhole, in real time. Each measured value of the series of measured values is compared with a predetermined fraction of a calibration value. Samples that are validated may be captured and brought to the surface for analysis. A method using the time series data and a predetermined fraction of the calibration value calculates a predicted flushing time to completion.
摘要:
A method for refining fluid sample data includes obtaining optical density data for a fluid sample in at least two color channels and at least one fluid component channel and determining a color-absorption function from the optical density data for the fluid sample in the at least two color channels. The method also includes calculating a portion of the optical density caused by color absorptions in each of the at least one fluid component channels, and de-coloring the optical density data in each of the at least one fluid component channels by removing the portion of the optical density data caused by color absorption.
摘要:
Apparatus and methods for measuring oil flow velocity in a well are provided which utilize fluorescence quenching. A marker which quenches the natural fluorescence of crude oil is chosen and injected into the oil flow at a first location. At a second location, the oil flow is subjected to light at a wavelength which will cause oil to naturally fluoresce. The fluorescence signal is detected at the second location by a sensing probe. The time that it takes for the quenching marker to move from the first location to the second location is measured by sensing a decrease in fluorescence due to the quencher. Fluid velocity is determined by dividing the distance between the marker-ejection point and the optical probe position by the time it took the marker to move that distance.
摘要:
Nuclear magnetic resonance techniques are used in a fluid sampling tool that extracts a fluid from subsurface earth formations into a flow channel within the tool. The magnetic resonance techniques involve applying a static magnetic field and an oscillating magnetic field to the fluid in the flow channel, and magnetic resonance signals are detected from the fluid and analyzed to extract information about the fluid such as composition, viscosity, etc.
摘要:
A downhole connate water sample drawn from the formation surrounding a well is validated when mud filtrate concentration is acceptably low. A preferred method includes drilling the well with a water-based drilling fluid, or more generally a water-based mud (WBM), containing a water-soluble dye. The dye acts as a tracer to distinguish connate water from WBM filtrate in a downhole sample of formation fluid contaminated by mud filtrate from the water-based mud. Preferably, an optical analyzer in a sampling tool measures light transmitted through the downhole sample to produce optical density data indicative of dye concentration. Preferably, optical density is measured at a first wavelength to obtain a first optical density, and at a second wavelength, close in wavelength to the first wavelength, to obtain a second optical density. First and second optical density data are transmitted to the surface. At the surface, in a data processor, the second optical density is subtracted from the first optical density to produce a third optical density that is substantially free of scattering error. The data processor validates each sample that has an acceptably low third optical density. The invention also provides a method of determining when to collect a sample of downhole fluid drawn over a period of time from a formation surrounding a well.
摘要:
A downhole optical apparatus includes an LED source, reflectance and fluorescence detectors, a plurality of fibers, a dichroic mirror (DM), a beam splitter/coupler, a probe, a short-pass filter (SP), a dichroic long-pass filter (LP), and a lens. Source light filtered by the SP is fed to the DM which deflects light of desired wavelengths only. The deflected light is focused by the lens onto a fiber and is ultimately injected into an oil flow by the probe. Light reflected by oil or fluorescing therefrom is received by the probe, and split by the splitter. A small portion is received by the reflectance detector. A large portion is received by the lens and directed to the DM which deflects reflected light and passes light at longer fluorescing wavelengths. Passed light is further filtered by the DM and LP to eliminate remnants of the reflected light, and provided to the fluorescence detector.
摘要:
The optical density of an oil sample at a plurality of wavelengths over a plurality of different (typically decreasing) pressures is monitored and used to find the size of agglomerated asphaltene particles which are precipitating from the oil sample. The optical density information used in finding the particle size is preferably optical density information relating to the scattering of light due to the asphaltene particles only. Thus, baseline optical density information of the oil sample at a high pressure is subtracted from optical density information obtained at test pressures at each wavelength of interest. Asphaltene particles of a radius of one micron and smaller were found to be powdery, while asphaltene particles of a radius of three microns and larger were found to include paving resins. The precipitation of asphaltenes is reversible by increasing the pressure under certain circumstances.
摘要:
Methods of detecting carbon dioxide in downhole environments are provided. Near-infrared light is transmitted through a gas downhole. Indications of near-infrared absorptions are detected from the gas and used to determine the presence of carbon dioxide.
摘要:
A method and apparatus is provided for determining a quality of downhole fluid. A series of measurements are taken of at least one parameter of borehole fluid that is indicative of OBM filtrate contamination. By curve-fitting, the series of the measured parameter values are used to create an asymptotic curve indicative of the quality of the downhole fluid. One embodiment determines OBM filtrate fraction in a borehole fluid sample. One embodiment is used when there is significant difference between the coloration of formation fluid and the coloration of OBM filtrate. Another is used when there is little or no difference between the coloration of formation fluid and the coloration of OBM filtrate. Another determines GOR of formation fluid corrected for OBM filtrate contamination. Another determines OD of formation fluid corrected for OBM filtrate contamination. Another determines conditions that would render optical density measurements invalid and sample capture premature. Another predicts the reduction of filtrate fraction for a specific extended pumping time. Another initiates sample capture when computed contamination fraction exhibits stable asymptotic convergence. Another compensates for wavelength-independent scattering. Another compensates for varying pump rate. Another reduces the effect of wavelength-dependent scattering.
摘要:
A method and apparatus is provided for determining OBM filtrate fraction in a downhole fluid sample. One embodiment of the method is used when there is significant difference between the coloration of formation fluid and the coloration of OBM filtrate. Another is used when there is little or no difference between the coloration of formation fluid and the coloration of OBM filtrate. Another determines GOR of formation fluid corrected for OBM filtrate contamination. Another determines OD of formation fluid corrected for OBM filtrate contamination. Another determines conditions that would render optical density measurements invalid and sample capture premature. Another predicts the reduction of filtrate fraction for a specific extended pumping time. Another initiates sample capture when computed contamination fraction exhibits stable asymptotic convergence.