Abstract:
A pixel and an organic light-emitting diode (OLED) display having the same are disclosed. In one aspect, a pixel includes an OLED including an anode and a cathode and configured to emit light corresponding to data signals applied during first and second frame periods. Each of the first and second frame periods includes a first discharge period and a light-emitting period subsequent to the first discharge period. The pixel also includes a pixel circuit configured to control light emission of the OLED, apply a first voltage to the anode during the light-emitting period, apply a second voltage to the cathode, the second voltage having a voltage level less than that of the first voltage, and apply a third voltage to the anode so as to discharge the anode during the first discharge period. The second voltage has different voltage levels during the first and second frame periods.
Abstract:
An organic light-emitting diode display is disclosed. In one aspect, the display includes a display panel including a plurality of display pixels and a plurality of dummy pixels. The display also includes a scan driver including a plurality of first stages configured to sequentially supply a plurality of scan signals to the scan lines and a plurality of second stages configured to sequentially supply a plurality of scan signals to the dummy scan lines. The display also includes a data driver configured to provide corresponding data signals to the data lines, wherein each of the scan signals includes at least one first pulse to be applied as a bias voltage to a driving transistor of each of the display pixels and the dummy pixels and a second pulse to be applied as the corresponding data signal to the driving transistor.
Abstract:
A display panel includes: a display including pixel columns electrically connected to data lines; a non-display area adjacent the display; a test circuit configured to receive a lighting test signal passing through at least a portion of the non-display area and to transfer the lighting test signal to the data lines in response to a test control signal; and a switch configured to receive a data signal from an external component and to transfer the data signal to the data lines in response to a switching signal.
Abstract:
A method of driving a display device includes: applying a first voltage at the first transistor to turn on the first transistor; maintaining the first voltage at the first transistor; applying a second voltage lower than the first voltage at the first transistor; wherein the applying of the first voltage comprises switching the fourth transistor according to the second scan signal to couple the gate electrode of the first transistor to the third power source, and switching the fifth transistor according to the light emission control signal to couple the first electrode of the first transistor to the first power source, and the applying of the second voltage comprises switching the second transistor according to the first scan signal to couple the first electrode of the first transistor to the data line, and switching the third transistor according to the first scan signal to diode-couple the first transistor.
Abstract:
A stage circuit including a plurality of stages connected to each other, where each of the stages includes: an output unit configured to output a voltage of a first power source or a signal of a third input terminal to an output terminal, based on a voltage applied to a first node or a second node; a first driver configured to control a voltage at a third node, based on signals of a first input terminal, a second input terminal and the third input terminal; a second driver configured to control the voltage at the first node, based on the signal of the second input terminal and the voltage at the third node; and a first transistor connected between the second node and the third node and maintained in a turn-on state.
Abstract:
A method of driving a display panel includes providing a boosting voltage line on the display panel with a boosting voltage, compensating the boosting voltage based on a feedback boosting voltage received from the display panel, and providing the boosting voltage line on the display panel with the compensated boosting voltage. The display panel includes a first sub pixel. The first sub pixel includes a first switching element and a first boosting switching element, the first switching element is connected to a first liquid crystal (LC) capacitor, a gate line, an m-th data line and a first electrode of the first LC capacitor, and the first boosting switching element is connected to the boosted voltage line, and ‘m’ is a natural number.
Abstract:
A display device includes a substrate includes a display area having a plurality of pixels, a pad area including a plurality of input pads, and a circuit area positioned between the pad area and the display area; a crack sensor having a first end and a second end, the first end being connected to a first input pad of the plurality of input pads; a first shorting element extending through the pad area, the first shorting element being connected to the second end and extending to an edge of the substrate; a plurality of data lines connected to the plurality of pixels; and a crack sensing circuit including a first switching element having an input terminal connected to the first end and an output terminal connected to a first data line of the plurality of data lines, and a second switching element having an input terminal connected to the second end and an output terminal connected to a second data line of the plurality of data lines.
Abstract:
A display device is provided. The display device may include a substrate, a plurality of pixels, a first data line, a second data line, a defect sensing line, a first input pad, and a static electricity discharge element. The substrate may include a display area and a peripheral area neighboring each other. The plurality of pixels may be positioned on the display area and may include a first pixel and a second pixel. The first data line may be electrically connected to the first pixel. The second data line may be electrically connected to the second pixel and may be electrically isolated from the first data line. The defect sensing line may be positioned on the peripheral area. The first input pad may be electrically connected to the defect sensing line. The static electricity discharge element may be electrically connected through the defect sensing line to the first input pad.
Abstract:
A display device includes a substrate having a display area and a non-display area. A plurality of pixels is disposed in the display area of the substrate. A plurality of data lines is connected to the plurality of pixels. A crack sensing line is connected to at least one of the plurality of data lines. The crack sensing line is disposed in the non-display area of the substrate. A dummy pattern layer is connected to the crack sensing line.
Abstract:
A display device is provided. The display device may include a substrate, a plurality of pixels, a first data line, a second data line, a defect sensing line, a first input pad, and a static electricity discharge element. The substrate may include a display area and a peripheral area neighboring each other. The plurality of pixels may be positioned on the display area and may include a first pixel and a second pixel. The first data line may be electrically connected to the first pixel. The second data line may be electrically connected to the second pixel and may be electrically isolated from the first data line. The defect sensing line may be positioned on the peripheral area. The first input pad may be electrically connected to the defect sensing line. The static electricity discharge element may be electrically connected through the defect sensing line to the first input pad.