摘要:
A voltage regulator includes a power supply unit configured to generate a power supply voltage based on a reference voltage and a feedback voltage, configured to control a current level of a power supply line based on a first control signal, and configured to generate a driving signal based on a second control signal, the power supply voltage being provided to an external logic circuit through the power supply line, and the current level of the power supply line being additionally controlled outside the power supply unit based on the driving signal, and a feedback unit configured to generate the feedback voltage based on the power supply voltage, and configured to control a level of the feedback voltage based on a third control signal.
摘要:
A smart card includes an internal voltage generator, a clock generator, and an internal circuit. The internal voltage generator generates a first internal voltage and a second internal voltage based on an input voltage received through an antenna. A level of the second internal voltage is lower than a level of the first internal voltage. The clock generator receives the first internal voltage and the second internal voltage to generate a clock signal. A frequency of the clock signal is changed according to the level of the first internal voltage. The internal circuit operates based on the clock signal and the second internal voltage.
摘要:
A voltage regulator receives an unregulated DC input voltage supply and provides a regulated DC output voltage. A primary pass element and an external resistor are located in a primary current path through which a load current flows from the input terminal to the output terminal. The voltage regulator includes two control circuits that control the impedances of two pass elements. Power dissipation can be improved and the dropout voltage can be reduced by maintaining the voltage on an internal node of the voltage regulator.
摘要:
A power regulation circuit includes at least a first regulator connected to a second regulator in series forming a first regulator pair and a third regulator connected to a fourth regulator in series forming a second regulator pair. The first regulator pair is connected in parallel with the second regulator pair. Each individual regulator is configured to separately regulate an input voltage to a predetermined regulated output voltage. The second regulator pair regulates the input voltage if a short condition occurs within the first regulator pair and the second and fourth regulators each regulate the input voltage if an open condition occurs within the first or third regulator respectively.
摘要:
A low drop-out (LDO) voltage regulator with a wide bandwidth power supply rejection ratio (PSRR) is described. In one aspect, the LDO voltage regulator includes two individual voltage regulator circuit stages. A first stage voltage regulator circuit output is at an intermediate voltage (VINT) between an input supply voltage (VDD) and a final regulated output voltage (VREG). A second stage voltage regulator circuit output is at the final regulated output voltage (VREG) and is optimized for noise-sensitive analog circuits across a wide operating bandwidth. The first stage voltage regulator circuit has a zero frequency while the second stage voltage regulator circuit has a matching pole frequency to minimize the AC response from VDD to VREG across all frequencies.
摘要:
In general, in one aspect, the disclosure describes a voltage regulator (VR) that includes a first amplifier receiving a first reference voltage and a feedback voltage as inputs. A second amplifier receiving a second reference voltage and an output of the first amplifier as inputs. A drive component (e.g., transistor(s)) coupled to the second amplifier to drive current to an output based on an output of the second amplifier. A shunt component (e.g., transistor(s)) coupled to the first amplifier to shunt current from the output based on the output of the first amplifier. Current variations in the shunt component are controlled.
摘要:
A device includes an N-channel transistor for output, a voltage raising circuit, a voltage dropping circuit, and an amplifier. A power supply voltage that is a first voltage is supplied to one end of the output N-channel transistor, and the other end of the output N-channel transistor functions as an output terminal. The voltage raising circuit raises the first voltage to generate a second voltage higher than the first voltage. The voltage dropping circuit reduces the second voltage to generate a third voltage that is higher than the first voltage and is lower than the second voltage. The amplifier amplifies the difference between a reference voltage and a voltage generated at the output terminal, using the third voltage as a power supply voltage, to generate a fourth voltage, and supplies the fourth voltage to the gate of the N-channel transistor for output.
摘要:
A voltage regulator device and accompanying methods are provided for providing efficient voltage regulation to an electronic device. Efficient regulator 400 receives an input voltage on VIN from a battery or some other power supply at node VIN and supplies a stable regulated voltage to load device 404 at node VOUT. Load device 404 pulls different amounts of current and requires different degrees of tolerance on the voltage at VOUT depending upon its operating conditions. Data collection and control circuit 401 is capable of enabling and disabling regulator 402 and regulator 403. Data collection and control circuit 401 is also capable of measuring certain performance parameters associated with load device 404 and the operating conditions of load device 404. Data collection and control circuit 401 enables regulator 402 if said operating conditions are such that when data collection and control circuit 401 enables regulator 403 the performance parameters associated with load 404 are below a predefined standard.
摘要:
The power supply control device comprises two regulating modes, linear regulation and chopping regulation. A current from a sensor, rectified by diodes, supplies a power supply circuit comprising a storage capacitor and a regulating transistor. A resistor and a control circuit measure the value of the current and select the regulating mode via a selector. If the current is lower than a preset threshold regulation is linear, the base of the transistor is connected to a Zener diode. When the current exceeds a preset threshold regulation is chopped and the base of the transistor is connected to the output of a comparator.
摘要:
A voltage source having a current feedback control loop for enhanced source impedance control of the output of the voltage source. Current feedback is used for a voltage-source amplifier wherein the source impedance is increased/decreased and/or reshaped by the voltage source amplifier's closed-loop gain and the additional current feedback. In particular, the enhanced source impedance control is accomplished through feedback of the output current of the voltage source to an analog error amplifier at an input to the voltage control loop. The output impedance Z.sub.desired is then adjusted in accordance with the equation Z.sub.desired =Z.sub.inv1 {1+G(s) H(s)}, where G(s) is the voltage source amplifier's closed-loop transfer function, H(s) is the transfer function of the output current feedback circuit and Z.sub.inv1 is the original source impedance of the voltage controlled voltage amplifier. Thus, once G(s) is defined, H(s) may be defined simply as the combined impedance of the output current feedback circuit. Impedance of this output current feedback circuit may then be altered until the source impedance of the circuit causes the voltage generating circuit to provide an output impedance which corresponds to the desired output impedance.