Abstract:
A dual band direct conversion architecture for both the receive (RX) and transmit (TX) path of a communications transceiver that minimizes the transceiver area by sharing common circuits used in both RX and TX paths is disclosed. The transceiver also allows the use of extensive digital calibration in order to achieve performance adequate to support high bit rate modulation schemes.
Abstract:
A single chip radio transceiver includes circuitry that enables received wideband RF signals to be down converted to base band frequencies and base band signals to be up converted to wideband RF signals prior to transmission without requiring conversion to an intermediate frequency. The circuitry includes a low noise amplifier, automatic frequency control circuitry for aligning the LO frequency with the frequency of the received RF signals, signal power measuring circuitry for measuring the signal to signal and power ratio and for adjusting frontal and rear amplification stages accordingly, and finally, filtering circuitry to filter high and low frequency interfering signals including DC offset.
Abstract:
It is provided a practical radio oscillating system for a radar system to alleviate the necessity of a reception filter of severe specification of pass band and an oscillating system and an amplifier of high performance and high reliability. The radio oscillating system has an optical modulator 2 for oscillation; a modulating means 6 for modulating a carrier wave “P” passing through the optical modulator 2 so as to superimpose sideband waves “Q” and “R” onto the carrier wave; an optical receiver 7 for oscillation to receive outgoing light “B” from the optical modulator 2 and to convert the outgoing light into an electrical signal; and a radiating means 8 for radiating radio signal “C” based on the electrical signal.
Abstract:
A single chip radio transceiver includes circuitry that enables received wideband RF signals to be down converted to base band frequencies and base band signals to be up converted to wideband RF signals prior to transmission without requiring conversion to an intermediate frequency. The circuitry includes a low noise amplifier, automatic frequency control circuitry for aligning the LO frequency with the frequency of the received RF signals, signal power measuring circuitry for measuring the signal to signal and power ratio and for adjusting frontal and rear amplification stages accordingly, and finally, filtering circuitry to filter high and low frequency interfering signals including DC offset.
Abstract:
A single chip radio transceiver includes circuitry that enables received RF signals to be down-converted to baseband frequencies and baseband signals to be up-converted to RF signals prior to transmission without requiring conversion to an intermediate frequency. The circuitry includes a low noise amplifier, automatic frequency control circuitry for aligning the LO frequency with the frequency of the received RF signals, received signal strength indicators for adjusting frontal and rear amplification stages accordingly, and, finally, filtering circuitry to filter high and low frequency interfering signals, including DC offset. A radio frequency (RF) variable gain amplifier (VGA) includes a power amplifier in a direct conversion radio transceiver that includes a gain determination module that reduces an input gain level to the power amplifier to adjust the output power level of the power amplifier according to temperature indications to maintain reliable operation or power level indications to maintain a constant output power level.
Abstract:
A GaAs E-Band transceiver front-end chip set is provided comprising three MMIC devices. The first device includes a circuit for receiving data at baseband, mixing the data with an LO signal having an E-Band frequency, and transmitting a resultant data stream at an upconverted E-Band frequency; a circuit for receiving data having an E-Band frequency, mixing the received data with an LO signal having an E-Band frequency, and downconverting the resultant mixed received signal to an IF; and a circuit for dividing a received LO signal at an E-Band frequency and communicating the LO signal to the transmission and receiver circuits. The second device comprises a circuit for receiving an LO signal at a reference frequency, and multiplying the LO signal to an E-Band frequency. The third device comprises a circuit for mixing the mixed received IF signal with an LO signal, and downconverting the resultant mixed received signal to a baseband frequency, and a circuit for generating an LO signal, communicating the LO signal to the second device, coupling the LO signal, dividing the coupled LO signal, and communicating the divided LO signal to the second downconversion circuit. The first and second devices may be manufactured by a p-HEMT process and the third device is manufactured by a MESFET process. Additionally, an E-Band communications system is provided which utilizes the aforementioned chip set.
Abstract:
A frequency plan is provided for particular use in a transceiver. Advantageously, a single oscillator may be used to generate desired frequency signals. One or more power splitters receive the signal and equally divide the signal into first and second signals having a frequency substantially equal to the original. Multipliers on each arm of the transceiver receive a signal and increase the frequency of the signal. In one exemplary embodiment, multiple signals having different frequencies may be transmitted over the same cable due in part to the generated frequency separation between the signals. In another exemplary embodiment, multiple signals may be transmitted over multiple cables. Additionally, multiple signals over one or more cables may be transmitted at or below 3 GHz.
Abstract:
A dual band direct conversion architecture for both the receive (RX) and transmit (TX) path of a communications transceiver that minimizes the transceiver area by sharing common circuits used in both RX and TX paths is disclosed. The transceiver also allows the use of extensive digital calibration in order to achieve performance adequate to support high bit rate modulation schemes.
Abstract:
A half duplex radio transceiver comprises a transmitter (100) and a low IF receiver (200). The difference between the transmit frequency and the receive frequency is equal to the low IF. A common frequency generator (300) is shared between the transmitter and receiver without needing to be retuned. An upconversion signal at the transmit frequency is used for down conversion in the receiver. Transceivers at opposite ends of a communication link, such as in a master/slave network, have their transmit and receive frequencies interchanged. Optionally a transceiver may be configurable to either form e.g. as either a master of a slave station. Channel sensing for Carrier Sense Multiple Access (CSMA) may be performed on the transmit frequency without retuning the receiver.
Abstract:
A transmitter-receiver unit has an antenna patch and an IF circuit, between which there is a large frequency difference, on a first side of a multilayer substrate. A high frequency circuit (including a local oscillator and a demodulation unit) except for the IF circuit is provided on a second side of the multilayer substrate. A ground conductive pattern is provided in the interior of the multilayer substrate. The circuit conductive pattern exposed at the second side of the multilayer substrate and a feeding point of the antenna patch conduct to each other through a through hole.