Abstract:
When an optical image obtained by an optical scanning unit of optically scanning an original sheet automatically fed by an original sheet feeder is read, it is discriminated in units of pixel whether or not dirt or scratch attached to a running reading glass plate is present. Moreover, the number of the dirt and the width of the dirt are detected, and an image reading position which does not come under the influence of the dirt as much as possible is set based on the detected number of the dirt and the detected width of the dirt even when the dirt is detected at all the reading positions.
Abstract:
An image reading apparatus includes a line light source having a light guide plate and red-, green-, and blue-LEDs, for a light transmitting original, and a contact image sensor unit for detecting light from the line light source. The light transmitting original is arranged between the line light source and the contact image sensor unit. The light transmitting original is read by moving the line light source and the contact image sensor unit relative to the light transmitting original. The line light source is moved interlockingly with the contact image sensor unit by the attraction between a magnet provided at both ends of the line light source in the longitudinal direction thereof and a magnet provided at both ends of the contact image sensor unit in the longitudinal direction thereof.
Abstract:
A contact image sensor fixing device for an office machine having a frame, a contact image sensor, and a white roller, the contact image sensor fixing device including an elastic unit mounted on the frame to push the contact image sensor against the whiter roller with a particular pressure, the contact image sensor reading data from a document as the document passes between the contact image sensor and the white roller; a holder unit to accommodate and support the contact image sensor; and at least one holder-movable unit freely moving the holder unit against the elastic force of the elastic unit applied to the contact image sensor to maintain an even pressure between the white roller and the contact image sensor when the contact image sensor receives a rotation force of the white roller.
Abstract:
An apparatus and a method adapted to be used in manufacturing an image scanning apparatus for calibrating a reflective lens on a carriage are disclosed. A calibrating device has thereon a first set of three projective points from three point light beams and a first set of three calibrating points corresponding to three point light sources. The calibrating device further includes thereon a second set of three projective points and a second set of three calibrating points for matching each of the projective points on the calibrating device with a corresponding one of the calibrating points by adjusting an angle and a position of the reflective lens on the carriage so as to achieve a calibrating function.
Abstract:
An image reading apparatus includes a line light source having a light guide plate and red-, green-, and blue-LEDs, for a light transmitting original, and a contact image sensor unit for detecting light from the line light source. The light transmitting original is arranged between the line light source and the contact image sensor unit. The light transmitting original is read by moving the line light source and the contact image sensor unit relative to the light transmitting original. The line light source is moved interlockingly with the contact image sensor unit by the attraction between a magnet provided at both ends of the line light source in the longitudinal direction thereof and a magnet provided at both ends of the contact image sensor unit in the longitudinal direction thereof.
Abstract:
Disclosed is an image reading apparatus for moving a document reading unit to a point below a document feeder that feeds documents, and emitting light from a light source of the document reading unit toward a feed roller of the document feeder, whereby light reflected from a document that travels between the feed roller and the light source is sensed by the document feeding unit to thereby read an image on the document. The apparatus includes a photoelectronic converter for outputting an electric signal that conforms to amount of incident light, and a reading position setting unit for moving the document reading unit, irradiating the feed roller with light from the light source at each position to which the document reading unit is moved, causing the photoelectronic converter to output an electric signal that conforms to amount of light reflected from the feed roller at each position, detecting a range in a sub-scan direction over which this electric signal exceeds a predetermined threshold value, and setting a position at the center of this range as a reading position.
Abstract:
According to a precision assembly technique, a first subassembly is precisely aligned relative to a plurality of alignment features in an alignment fixture and at least three non-coplanar flexures having complementary alignment features are located with respect to corresponding alignment features on the alignment fixture and mechanically attached to the first subassembly. The first subassembly with the attached flexure sheets is removed from the alignment fixture and located with respect to a second subassembly having a plurality of alignment features identical to the alignment features in the alignment fixture using the alignment features on the second subassembly and the complementary alignment features on the flexure sheets to precisely align the first subassembly with the complementary alignment features on the second subassembly. The flexure sheets are then mechanically attached to the second subassembly, whereby the first and second subassemblies are aligned and rigidly connected to one another.
Abstract:
A method for positioning the initialization position of a light source for an image reading apparatus operated under a passing-light mode is provided. A platen including a reference area that provides a pattern disposed at a position x is provided. The method comprises a first step of positioning the scan model at the position x in order to read the pattern within the reference area. Secondly, the method moves the light source toward the reference area and, at the same time, triggers the scan module to scan the image. Thirdly, repeat the second step until the image scanned by the scan module meets a pre-determined criterion. Fourthly, the method makes the light source module further move a distance of .DELTA.D-.DELTA.d. The .DELTA.d is the distance traveled by the light source during an interval which begins at the capture of the pattern by the scan module and ends at the determination of the pre-determined criterion as being met.