Abstract:
An image reading apparatus includes a platen on which a document is to be placed; an image generating unit that performs scanning on the platen to generate a position detection image and an output image; a document position detecting unit that detects whether a document exists and a position of the document based on the generated position detection image; a document extracting unit that extract an area corresponding to the document from the generated output image; and a control unit that controls the image generating unit, the document position detecting unit, and the document extracting unit so as to output an image of the extracted document.
Abstract:
A reading module has a light source, an optical system imaging, as image light, reflected light of the light radiated from the light source to the document, and a sensor converting the image light imaged by the optical system into an electrical signal. The optical system has a mirror array in which reflection mirrors are coupled together in an array in the main scanning direction and an aperture stop portion having a first aperture adjusting the amount of image light reflected from a reflection mirror and a second aperture shielding stray light that enters the first aperture from an adjacent reflection mirror. The second aperture is arranged at such a position as to be able to shield stray light passing through a boundary between the reflection mirrors and the center of the first aperture when the mirror array contracts to the maximum extent in the main scanning direction.
Abstract:
A light-guide member includes a light-incident surface formed at an end portion of the light-guide member in a first direction, a light-emitting surface that is elongated in the first direction and that includes first and second light-emitting regions, which cause light to be emitted in different directions in a first cross section that is perpendicular to the first direction, a common deflecting portion that deflects light from the light-incident surface and causes the light to be emitted from the first and second light-emitting regions to the outside, and first and second protruding portions each of which is located on one of two sides of the deflecting portion in the first cross section, the first and second protruding portions protruding in a direction away from the light-emitting surface with respect to the deflecting portion.
Abstract:
A combined scanning and staring (SCARING) focal plane array (FPA) imaging system having a plurality of modes of operation is provided. In one example, the SCARING FPA system includes a photodetector array with a plurality of photodetectors arranged in a plurality of photodetector rows, a readout integrated circuit (ROIC) coupled to the photodetector array, and a processor coupled to the ROIC. The processor coupled to the ROIC is configured to dynamically configure the SCARING FPA between a scanning mode of operation and a staring mode of operation.
Abstract:
Systems, methods, and computer program products for capturing and analyzing image data, preferably video data, are disclosed. The inventive concepts include using multiple frames of image data to generate a composite image, where the composite image may be characterized by a higher resolution than one or more of the individual frames used to generate the composite image, and/or absence of a blurred region present in one or more of the individual frames. Inventive techniques also include determining a minimum capture resolution appropriate for capturing images of particular objects for downstream processing, and optionally triggering generation of a composite image having sufficient resolution to facilitate the downstream processing in response to detecting one or more frames of image data are characterized by a resolution, and/or a region having a resolution, less than the minimum capture resolution appropriate for capturing images of those particular objects.
Abstract:
A method includes capturing plural frames of video data using a mobile device. The frames are analyzed to determine whether any depict an object exhibiting one or more defining characteristics, and if so, whether those frame(s) depicting the object also satisfy one or more predetermined quality control criteria. If one or more of the frames depict the object and also satisfy the one or more predetermined quality control criteria, the method further includes automatically capturing an image of the object. Exemplary defining characteristics are specified for various types of object, particularly objects comprising documents. Related systems and computer program products are also disclosed. The presently disclosed techniques and systems represent translational developments across the fields of image processing and business process management. Improved analytical techniques enable processing of image captured using cameras rather than traditional scanner technology, and facilitate distribution, tracking and analysis of documents and information throughout business processes.
Abstract:
A light source driving circuit that drives a light source includes a driving electric current generator that generates a driving electric current including a predetermined electric current, a first auxiliary current, and a second auxiliary current; and a controller that sets values of the first and second auxiliary currents by using first and second lighting pattern signals, wherein each of the first and second lighting pattern signals is for controlling supply of the predetermined electric current to the light source. After setting a first value of the first auxiliary current, a second value of the second auxiliary current is set by using the second lighting pattern signal that defines a time period for stopping supply of the predetermined electric current to be shorter than a time period for stopping the supply of the predetermined electric current that is defined by the first lighting pattern signal.
Abstract:
A reading apparatus includes a reading unit and a movement-restriction unit that restricts a movement of the reading unit. The reading unit includes a reading portion for reading an image, a holding portion that holds the reading portion. The holding portion has a first surface. The reading unit further includes a sliding portion that moves in contact with the movement-restriction unit. The sliding portion has a second surface facing the first surface. A first region is provided between the first surface of the holding portion and the second surface of the sliding portion so as to form a predetermined gap.
Abstract:
An image reading device and an image forming apparatus having the same that can increase a scan quality by mounting positions of units to read information recorded on a document and a mounting structure of a light shielding member. The image reading device may include a first reading unit to read image information recorded on a first surface of a document, a second reading unit disposed at a predetermined distance from the first reading unit along a document feeding direction to read image information recorded on a second surface of the document, and at least one light shielding member mounted between the first reading unit and the second reading unit along the document feeding direction. The light shielding member, which may include a document guide portion, may extend in a direction different from the document feeding direction such that one end portion is located in a document feeding path.
Abstract:
An optical scanner includes a light source, optical deflector, mirror, first photosensitive drum, and second photosensitive drum. The light source emits a first light beam and a second light beam. The optical deflector deflects the first light beam and the second light beam. The mirror has a reflecting part that reflects the deflected first light beam and a passing part that passes the deflected second light beam. The passing part is displaced from the reflecting part. The first photosensitive drum performs a development with a first toner having a first color. The reflected first light beam scans the first photosensitive drum in a main scanning direction. The second photosensitive drum performs a development with a second toner having a second color different from the first color. The passed second light beam scans the second photosensitive drum in the main scanning direction. The first photosensitive drum and second photosensitive drum are arranged in a sub scanning direction orthogonal to the main scanning direction.