Abstract:
A spraying device for dispensing electrostatic liquid droplets includes a container holding a liquid at one end, and having a nozzle assembly with an aperture at another end. The nozzle assembly includes a longitudinal hollow tube terminating in a metallic structure. The metallic structure includes a metallic base plate having at least one aperture formed therein for fluid communication with the hollow tube. The longitudinal hollow tube includes an end inserted in the liquid. A charge accumulator disposed in the liquid accumulates electrostatic charges. A wire conductor between the base plate and the charge accumulator transfers the electrostatic charges from the liquid to the nozzle assembly.
Abstract:
A blast nozzle formed of a non-conductive material includes electrically conductive paths embedded therein to keep the build up of static electricity below an undesirable level. Stainless steel rods extend the length of the blast nozzle, providing a continuous electrical path.
Abstract:
An electrostatic spray device and a cartridge for an electrostatic spray device that reduce the occurrence of electrically induced emulsion product separation are disclosed. The device and/or the cartridge may reduce electrically induced emulsion product separation by providing a conductive high voltage shield substantially around the product reservoir. Alternatively, the device and/or the cartridge may prevent the product located at the charging location from being in fluid communication with the product reservoir so that the product that is being charged cannot flow back into the product reservoir. The device and/or cartridge may alternatively reduce electrically induced emulsion product separation by minimizing the volume of product between the charging location and the exit orifice of the nozzle.
Abstract:
An electrostatic spraying device which is configured and disposed to electrostatically charge and dispense a product from a supply to a point of dispersal. The electrostatic spraying device has a reservoir configured to contain the supply of product and a nozzle to disperse the product. The nozzle being disposed at the point of dispersal. The nozzle has an exit orifice. A channel is disposed between the reservoir and the nozzle, wherein the channel permits the electrostatic charging of the product upon the product moving within the channel. A positive displacement mechanism is used to move the product from the reservoir to the nozzle. A power source supplies an electrical charge. A high voltage power supply, high voltage contact, and high voltage electrode are used. A portion of the high voltage electrode being disposed between the reservoir and the nozzle is used to electrostatically charge the product within the channel at a charging location. A distance between the charging location and the nozzle exit orifice is governed by the following relationship: VO/d