Abstract:
A photomultiplier tube comprising a photocathode, a plurality of mesh dynodes arranged parallel to the photocathode, an anode that is disposed in a face-to-face relationship with the photocathode in such a manner that the mesh dynodes are interposed between the anode and the photocathode, the anode being divided into segments larger than the openings of each dynode, and at least one layer of focusing electrode for focusing an electron beam by the lens action which is disposed between the photocathode and the anode.
Abstract:
A planar mesh structure that facilitates forming into a non-planar mesh structure comprises a peripheral support ring lying in a plane with a plurality of first members and a plurality of second members lying in the plane. The first members comprise substantially concentric, spaced-apart mesh rings of progressively decreasing diameter disposed within the peripheral support ring. The plurality of second members extend generally inwardly from the peripheral support ring and terminate at the innermost of the first members. The second members intersect the first members disposed between the peripheral support ring and the innermost first member to form, with the intersected first members, a plurality of apertures. In one embodiment, the second members are generally arcuately shaped and lie in a first plane with the support ring and the first members. The arcuate shape permits the second members to be formed in a second plane substantially orthogonal to the first plane without significantly stretching the second members. In an alternative embodiment, the second members have a generally undulatory shape lying in the first plane with the support ring and the first members. The generally undulatory shape provides forming relief which permits the second members to be formed into a second plane substantially orthogonal to the first plane without significantly stretching the second members.
Abstract:
A photomultiplier tube comprises an electron multiplier assembly including a pair of oppositely-disposed insulative support spacers. A plurality of elements including an ultimate dynode and an anode are affixed to the support spacers. The ultimate dynode comprises a relatively inflexible multilateral hollow member having two plane-face surfaces lying at an acute angle to one another and terminating at a lower transverse edge. The ultimate dynode includes dynode mounting tabs extending from opposing ends thereof for affixing the ultimate dynode to the support spacers. The anode includes a substantially flat electron permeable mesh portion spaced from one of the plane-face surfaces of the ultimate dynode. Anode mounting tabs extend from opposing ends thereof for affixing the anode to the support spacers. Electrical leakage isolation slots are formed in the support spacers to increase the electrical leakage path length across the support spacers between the ultimate dynode and the anode.
Abstract:
An electron discharge tube includes an evacuated envelope comprising a photocathode, an anode, a primary dynode and a secondary dynode for propagating and concatenating electron emission from the photocathode to the anode. A focusing electrode is disposed between the photocathode and the dynodes. The focusing electrode is capable of generating an electric field for focusing the electron emission between the photocathode and the primary dynode and also between the primary dynode and the secondary dynode. The focusing electrode has a planar surface that is reflective to light transmitted through the photocathode so that some of the transmitted light is returned to the photocathode to increase the responsivity of the tube.
Abstract:
This device uses an oxide-metal matrix material to enable the integration either constant or pulsed image readout without the use of electron scanning. It takes advantage of a new materials's ability to serve as both a field effect emitter and a matrix channel for the emitted electrons to enable improved resolution.
Abstract:
The structure comprises an evacuated envelope that includes a transparent front panel having a cathodoluminescent screen thereon and a back panel interconnectably sealed to the front panel. A plurality of first vanes, spaced from and parallel to each other, are perpendicular to and in contact with the back panel and a plurality of second vanes, spaced from and parallel to each other, are perpendicular to and in contact with the front panel. The first and second vanes are transverse to each other and provide mutual support for each other. Electroding to control operation of the device is formed directly on the vanes.
Abstract:
A single photomultiplier tube having four sensing areas each of which produces its own independent electrical signal that is related to the quantity of sensed matter that impinges on its area.
Abstract:
A mounting means is provided for substantially electrically isolating an electrode assembly of a photomultiplier from the inner surface wall of a glass envelope. The electrode assembly also includes an electrode focussing means for substantially preventing divergent electrons from impinging on electrode support spacers. The combination substantially eliminates the operational electrical instability known as hysteresis.
Abstract:
Microchannel plates prepared from anodized aluminum layers etched to increase the pore volume to approximately 50 percent and then treated to exhibit suitable electrical properties for use as a channel plate.
Abstract:
AN ELECTRON IMAGE OF THE DISPERSED SPECTRAL LINES CHARACTERISTIC OF A CHEMICAL ELEMENT BEING ANALYZED IS PERIODICALLY SCANNED ACROSS A SLIT-LIKE APERTURE OF AN IMAGE DISSECTOR PHOTOTUBE. A GATING PULSE IS DELAYED RELATIVE TO THE START OF EACH SWEEP TO SIGNAL THE TIME WHEN THE NARROW RANGE OF INTEREST IN THE ELECTRON IMAGE IS PASSING THROUGH THE SLIT; AND THE GATING PULSE ENABLES AN AMPLIFIER RECEIV-
ING THE OUTPUT SIGNAL OF THE PHOTUBE TO SELECTIVELY AMPLIFY ONLY THIS NARROW RANGE. THE SIGNAL FROM THE GATED AMPLIFIER IS THEN FED TO AN INTEGRATOR CIRCUIT WHICH STORES THE GATED SIGNAL FOR A KNOWN NUMBER OF SWEEPS.