Abstract:
The present invention relates to a multi-layered anti-adhesion barrier, particularly to a multi-layered anti-adhesion barrier comprising a nanofibrous structured base layer electrospun from a hydrophobic, biodegradable, biocompatible polymer and a polymer layer formed by coating a hydrophilic, biooriginated polymer on the base layer, and a method for the preparing the same. The multi-layered anti-adhesion barrier of the present invention can solve the problems of the conventional gel, solution, sponge, film or nonwoven type anti-adhesion systems, including adhesion to tissues or organs, flexibility, physical strength, ease of handling (ease of folding and bending), etc., offers improved user convenience. With a nanofibrous structure, the multi-layered anti-adhesion barrier of the present invention effectively blocks the infiltration or migration of blood and cells and promotes the healing of wounds. It is not torn or broken when folded or rolled and can be easily handled using small surgical instruments. Thus, it can minimize a foreign body reaction when used in various surgical operations.
Abstract:
A method of and apparatus for setting optimum recording power using characteristic values calculated inversely from recording power that allows a recordable optical disc to have a minimum value of jitter. The method includes setting a first optimum recording power value using characteristic values of an RF signal detected from an optical disc, and recording a predetermined pattern on the optical disc while changing the first recording power value; measuring a value of jitter according to the recorded pattern, and setting a recording power value when a minimum value of jitter is obtained as a second optimum recording power value; inversely calculating the characteristic values from the second optimum recording power value; and setting a third optimum recording power value using the inversely calculated characteristic values. Accordingly, it is possible to improve recording and reproducing qualities of optical discs that have the same time information and ID but their writing/reading speeds and media are different.