Abstract:
An airfoil comprises one or more internal cooling circuits. The cooling circuits can be fed with a flow of cooling fluid from one or more cooling air inlet passages in fluid communication with the cooling circuits. The cooling circuits can further comprise a leading edge cooling circuit defined by a supply passage, a pin bank passage divided into one or more sub-circuits by pin banks disposed within the pin bank passage, and at least first and second cooling passages. The cooling circuits can provide the cooling fluid flow within the airfoil to cool the airfoil, as well as provide a cooling fluid to a plurality of film holes to create a cooling film on the external surface of the airfoil.
Abstract:
An engine component includes a hot surface in thermal communication with a hot combustion gas flow, and a cooling surface, opposite the hot surface, along which a cooling fluid flows. At least one vortex generator is provided on the cooling surface, and can induce a vortex in the cooling fluid in response to contact with the flowing cooling fluid.
Abstract:
The present application provides an airfoil with a cooling flow therein. The airfoil may include an internal cooling passage, a number of cooling holes in communication with the internal cooling passage, and a number of pin-fins positioned within the internal cooling passage. The pin-fins are arranged with one or more turning openings and one or more guiding openings so as to direct the cooling flow towards the cooling holes.
Abstract:
A core for forming micro channels within a turbine component is provided. The core includes a base comprising a first side and a second side; and a core assembly coupled to the second side. The core assembly further includes a plurality of channel members, wherein each channel member has a first end, a second end, and a channel body coupled to and extending between said first end and said second end. The channel body includes a channel shape configured to form the micro channels within the turbine component.
Abstract:
An airfoil of a turbine rotor blade that includes a cooling configuration having a plurality of elongated flow passages for receiving and directing a coolant along a path through the airfoil. The cooling configuration may include: a central flow passage flanked to each side by near-wall flow passages that includes a pressure side near-wall flow passage and a suction side near-wall flow passage; a first port that fluidly connects the central flow passage to the pressure side near-wall flow passage; a second port that fluidly connects the central flow passage to the suction side near-wall flow passage; and impingement connectors that fluidly connect the central flow passage to a leading edge flow passage.
Abstract:
A turbine blade that includes an airfoil defined by a concave shaped pressure side outer wall and a convex shaped suction side outer wall that connect along leading and trailing edges and, therebetween, form a radially extending chamber for receiving the flow of a coolant. The turbine blade further may include a rib configuration that partitions the chamber of the airfoil into radially extending flow passages. A first flow passage may include a first side on which turbulators are positioned, wherein each of the turbulators comprises a canted configuration.
Abstract:
An airfoil includes an outer surface having a leading edge, a trailing edge downstream from the leading edge, and a convex surface between the leading and trailing edges. A cavity is inside the outer surface, and a platform is connected to the outer surface and defines a top surface around at least a portion of the outer surface. A first plurality of trenches is beneath the top surface of the platform upstream from the leading edge, wherein each trench in the first plurality of trenches is in fluid communication with the cavity inside the outer surface. A first plurality of cooling passages provide fluid communication from the first plurality of trenches through the top surface of the platform.