Abstract:
A turbine rotor blade that includes a tip shroud attached to the outboard tip of the airfoil. The tip shroud may include an axially and circumferentially extending planar component in which an inboard surface opposes an outboard surface, and a shroud edge that connects the inboard surface to the outboard surface and defines an outboard profile of the tip shroud. The tip shroud may include a seal rail protruding from the outboard surface of the tip shroud and a cutter tooth disposed on the seal rail. The cutter tooth may be formed as a circumferential section of the seal rail that is axially thickened. The seal rail may further include a leakage gap formed therethrough that is configured to increase a leakage level during operation.
Abstract:
A blade for a turbomachine includes an airfoil extending radially between a root and a tip with a tip shroud coupled to the tip of the airfoil. The tip shroud includes a platform having an outer surface extending generally perpendicular to the airfoil. The tip shroud also includes a forward rail extending radially outward from the outer surface of the platform. The forward rail is oriented generally perpendicular to a hot gas path of the turbomachine. A cooling cavity is defined in a central portion of the platform. The tip shroud also includes a cooling channel extending between the cooling cavity and an ejection slot formed in the forward rail. The ejection slot is positioned radially outward of the outer surface of the platform of the tip shroud.
Abstract:
A sealing arrangement for a turbine system includes a bucket having an outer tip and at least one bucket ridge extending radially outwardly from the outer tip, the at least one bucket ridge comprising an abradable material. Also included is a stationary shroud disposed radially outwardly from the outer tip of the bucket. Further included is at least one shroud ridge extending radially inwardly from the stationary shroud toward the outer tip of the bucket, the at least one shroud ridge comprising the abradable material.
Abstract:
The present application provides a turbine bucket. The turbine bucket may include an airfoil and a tip shroud attached to the airfoil. The tip shroud may include a cooling core and an enhanced cooling surface.
Abstract:
A turbine airfoil includes a leading edge and a trailing edge. Also included is a cooling channel extending in a radial direction and tapering inwardly toward the trailing edge, the cooling channel at least partially defined by a pressure side face and a suction side face. Further included is a first plurality of turbulators protruding from one of the pressure side face and the suction side face to define a first height, the first plurality of turbulators extending toward the trailing edge of the turbine airfoil and spaced radially from each other. Yet further included is a second plurality of turbulators protruding from one of the pressure side face and the suction side face to define a second height that is less than the first height, the second plurality of turbulators extending toward the trailing edge of the turbine airfoil and spaced radially from each other.
Abstract:
The present application provides a turbine bucket. The turbine bucket may include an airfoil and a tip shroud attached to the airfoil. The tip shroud may include a cooling core and an enhanced cooling surface.
Abstract:
A layered arrangement, a hot-gas path component, and a process of producing a layered arrangement are disclosed. The layered arrangement includes a substrate layer, a ceramic matrix composite layer, and a non-metal spacer between the substrate layer and the ceramic matrix composite layer configured to define one or more pockets. The hot-gas-path component includes a nickel-based superalloy layer, a ceramic matrix composite layer, and a ceramic spacer between the nickel-based superalloy layer and the ceramic matrix composite layer. The ceramic spacer is mechanically secured to one or both of the substrate layer and the ceramic matrix composite layer, and the ceramic spacer is bonded to the substrate layer or the ceramic matrix composite layer. The process includes securing a non-metal spacer between a substrate layer and a ceramic matrix composite layer of the layered arrangement.
Abstract:
A rotor blade includes an airfoil having a blade tip and a tip cavity formed at the blade tip. The tip cavity includes a tip cap that is recessed radially inwardly from the tip and surrounded continuously by pressure and suction side walls of the airfoil. The tip cap further includes an aperture that extends through the tip cap and provides for fluid communication between an internal cavity defined within the airfoil and the tip cavity. An exhaust port provides for fluid communication out the tip cavity through one of the pressure side wall, the suction side wall or the trailing edge. A portion of at least one of the suction side wall and the pressure side wall that defines the tip cavity extends obliquely outwardly from the tip cavity with respect to a radial direction.
Abstract:
A rotor blade includes an airfoil having a blade tip and a tip cavity formed at the blade tip. The blade tip defines a radially outer surface of the airfoil. The tip cavity includes a tip cap that is recessed radially inwardly from the tip and surrounded by pressure and suction side walls of the airfoil. The tip cap is in fluid communication with an internal cavity defined within the airfoil. A portion of at least one of the suction side wall or the pressure side wall that defines the tip cavity extends obliquely outwardly from the tip cavity. A plurality of slots is defined in at least one of the suction side wall or the pressure side wall along the radially outer surface proximate to the trailing edge of the airfoil.
Abstract:
A rotor blade includes an airfoil having a tip plate that extends across an outer radial end. A rim extends radially outward from the tip plate and surrounds at least a portion of the airfoil and includes a concave portion opposed to a convex portion. A plurality of dividers extend between the concave and convex portions to define a plurality of pockets between the concave and convex portions at the outer radial end. A plurality of cooling passages through the tip plate provide fluid communication through the tip plate to the plurality of pockets. A first fluid passage in at least one divider provides fluid communication between adjacent pockets across the at least one divider.