Abstract:
The present specification provides a method for performing measurements, by a terminal, in a coverage extension area of a small-scale cell in a wireless communication system in which macro cell and the small-scale cell coexist. The method for performing measurements can include the steps of: receiving information about a first subframe on which measurements for the small-scale cell can be performed and information about a second subframe on which measurements for the macro cell can be performed; when an interference cancellation function is set, measuring reference signal received power (RSRP) and a received signal strength indicator (RSSI) for the small-scale cell by driving the interference cancellation function on the first subframe; and measuring RSRP on the second subframe for the macro cell by driving the interference cancellation function and measuring the RSSI for the macro cell without driving the interference cancellation function.
Abstract:
There is provided a method for limiting a spurious emission, the method performed by a user equipment (UE). The method may comprise: if a radio frequency (RF) unit of the UE is configured to use a 3GPP standard based E-UTRA band 1, configuring a RF unit of the UE to limit a maximum level of spurious emission to −50 dBm for protecting other UE using a 3GPP standard based E-UTRA band 5 in order to apply a UE-to-UE coexistence requirement for the same region to inter-regions; if the RF unit is configured to use the 3GPP standard based E-UTRA band 5, configuring the RF unit of the UE to limit a maximum level of spurious emission to −50 dBm for protecting other UE using at least one of the 3GPP standard based E-UTRA bands 1, 3, 7, 8, 38, 40 in order to apply a UE-to-UE coexistence requirement for the same region to inter-regions; and transmitting an uplink signal through the configured RF unit.
Abstract:
The present disclosure relates to a wireless communication system and, more particularly, to a method and an apparatus therefor, the method comprising the steps of: detecting an SSB in an unlicensed band, the SSB including an index related to a CORESET configuration; determining, on the basis of the index, an RB offset used for identifying the position of a CORESET frequency associated with the SSB; and monitoring the CORESET in the unlicensed band on the basis of the RB offset.
Abstract:
A disclosure of the present specification provides a method for V2X sidelink communication, which is performed by a vehicle to everything (V2X) device. The method may comprise the steps of: performing synchronization for V2X sidelink transmission on the basis of a synchronization reference user equipment (SyncRefUE); and performing V2X sidelink transmission on the basis of the synchronization. For the V2X sidelink transmission, a transmission timing error (Te) may have a value smaller than or equal to a first value. The first value may be predetermined on the basis of a subcarrier spacing (SCS) of a sidelink signal, and the subcarrier spacing (SCS) may include 15 kHz, 30 kHz, and 60 kHz.
Abstract:
There is provided a method for performing measurement, the method performed by a communication device and comprising: receiving information related to configured measurement gap (MG) from a serving cell, wherein the information related to the configured MG includes MG timing advance value; determining a MG based on the information related to the configured MG; and performing the measurement during the determined MG, wherein the determined MG starts at the MG timing advance value advanced to an end of the latest subframe occurring immediately before the configured MG.
Abstract:
The present disclosure relates to a wireless communication system and, more particularly, to a method and an apparatus therefor, the method comprising the steps of: detecting an SSB in an unlicensed band, the SSB including an index related to a CORESET configuration; determining, on the basis of the index, an RB offset used for identifying the position of a CORESET frequency associated with the SSB; and monitoring the CORESET in the unlicensed band on the basis of the RB offset.
Abstract:
One disclosure of the present specification provides a measurement method. The measurement method comprises the steps of: performing a reference signal received power (RSRP) measurement on the basis of a synchronization signal block (SSB), which is received from a serving cell; performing a received signal strength indicator (RSSI) measurement by using a reference signal, which is received in a bandwidth part (BWP), when a frequency band of the SSB is not included in the BWP, which is set for a terminal; and determining reference symbol received quality (RSRQ) on the basis of the results of the performed RSRP measurement and the performed RSSI measurement.
Abstract:
A disclosure of the present specification provides a method for switching a bandwidth part (BWP) for sidelink communication. The method may comprise the steps of: receiving information on BWP switching timing from a base station; and performing BWP switching on the basis of the information on BWP switching timing. The information on BWP switching timing may include first BWP switching information or second BWP switching information. The first BWP switching information may be time information about BWP switching from a sidelink (SL) to an uplink (UL) or a downlink (DL) with the base station. The second BWP switching information may be time information about BWP switching to the sidelink (SL) from the uplink (UL) or the downlink (DL) with the base station.
Abstract:
There is provided a method for performing communication related to inter-band CA. The method is performed by a wireless communication device. The wireless communication device may receive cell information from a PCell. The cell information may include first information that the PCell is collocated with a SCell within a base station or second information that the PCell is not collocated with the SCell. The PCell and the SCell are configured for the inter-band CA. The wireless communication device may perform communication with at least one of the PCell and the SCell.
Abstract:
One disclosure of the present specification provides a method by which user equipment (UE) performs a measurement. The method comprises the steps of: receiving, from a serving cell, a synchronization signal (SS)/physical broadcast channel (PBCH) block (SSB), wherein the SSB is used for radio link monitoring (RLM); and performing an RLM measurement on the basis of an RLM-reference signal (RLM-RS) included in the SSB, wherein, if the SSB is quasi-co-located (QCL) with respect to a channel-state information (CSI) reference signal (CSI-RS) resource, the RLM measurement is performed during a first evaluation period on the basis of a first value and, if the SSB is not QCL with respect to the CSI-RS resource, the RLM measurement is performed during a second evaluation period on the basis of a second value, and the first evaluation period is smaller than the second evaluation period.