摘要:
According to one method of simulation processing, instrumentation code, such as an runtime executive (rtx), receives one or more statements describing an count event and identifying the count event as an outlying count event. While simulating a design utilizing the HDL simulation model, occurrences of the outlying count event are counted to obtain a count event value. Simulation result data obtained from simulating the design is then received and processed. In the processing, the count event value is recorded within a data storage subsystem responsive to a determination of whether or not the count event value of the outlying count event exceeds a previously recorded count event value.
摘要:
According to a method of simulation processing, an instrumented simulation executable model of a design is built by compiling one or more hardware description language (HDL) files specifying one or more design entities within the design and one or more instrumentation entities and instantiating instances of the one or more instrumentation entities within instances of the one or more design entities. Operation of the design is then simulated utilizing the instrumented simulation executable model. Simulating operation includes each of multiple instantiations of the one or more instrumentation entities generating a respective external phase signal representing an occurrence of a particular phase of operation and instrumentation combining logic generating from external phase signals of the multiple instantiations of the one or more instrumentation entities an aggregate phase signal representing an occurrence of the particular phase.
摘要:
Asynchronous behavior of a circuit is modeled by modifying latches in a netlist to add an extra port to the latches, e.g., a single-port latch is transformed into a dual-port latch. Each input port has an enable line and a data input. The data input in the added port is a feedback line from the latch output, and the enable line in the added port is the logical NOR of all of the original enable lines. By adding this extra latch port in the higher-level model, it becomes possible to introduce assertion logic to ensure that one and only one latch port for a given latch is ever active during the same simulation cycle. The model can then be tested earlier in the design methodology prior to the availability of the post-synthesis netlist. The model can also be used in both simulation and formal or semi-formal verification.
摘要:
Disclosed herein is a method of managing data results of simulation processing of a hardware description language (HDL) model based upon keywords. In accordance with the method, a restriction list associated with the HDL model is received. The HDL model has a maximum number of possible keyword/value pairs sets for which result data can be obtained, and the restriction list specifies a fewer number of keyword/value pair sets for which the result data can be queried based upon at least one keyword. In response to receipt of result data obtained by simulation of the HDL model, the result data are stored within a data storage subsystem by reference to the restriction list, such that particular result data attributable to each of the plurality of keyword/value sets is separately accessible.
摘要:
A method and system for providing centralized access to count event information from testing of a hardware simulation model within a batch simulation farm which includes simulation clients and an instrumentation server. Count event data for said hardware simulation model is received by the instrumentation server from one or more simulation clients. A first and a second counter report are generated for the hardware simulation model, in which the first and second counter reports are derived from the count event data received by the instrumentation server. The first counter report is compared to the second counter report, and responsive to this comparison, a counter difference report is generated within the instrumentation server that conveys count event trends associated with the simulation model under different simulation testcases.
摘要:
A system and method for accurately modeling an asynchronous interface using expanded logic elements are provided. With the apparatus and method, the logic of an asynchronous interface is reduced to primitive logic elements. These primitive logic elements are expanded by the mechanisms of the present invention to take into consideration whether or not the primitive logic elements themselves may be experiencing a switching or glitch hazard and whether or not the inputs to the primitive logic elements may be based on a switching or glitch hazard from another primitive logic element in the asynchronous interface logic. These expanded logic elements are used in an integrated circuit design to replace the original primitive logic elements in the design. The asynchronous interface may then be simulated with the expanded logic elements providing outputs indicative of whether the actual data output of the expanded logic elements is deterministic or not.
摘要:
Within a display device, a respective one of a plurality of design graphical representations is displayed for each of a plurality of hierarchically arranged design entity instances within a simulated system. The design entity instances include a particular design entity instance containing a latch that is represented by a particular design graphical representation. A configuration entity instance associated with the particular design entity is identified within a configuration database associated with the simulated system. The configuration entity instance has a plurality of different settings that each reflects a value of the latch. Within the display device, a configuration graphical representation of the configuration entity instance is presented in association with the particular design graphical representation corresponding to the particular design entity instance. In addition, a current setting of the configuration entity instance is presented concurrently with the configuration graphical representation.
摘要:
A method, an apparatus and computer instructions are provided for specifying multiple voltage domains of a signal and macros in a processor chip and validating physical implementation and interconnections of the signal and macros. A set of attributes is provided for designs to define multiple voltage domains of a signal and macros in a processor chip. A first validation mechanism is then provided to validate that no electrical or logical errors created by logical connections between macros as defined by the set of attributes. A translation mechanism is provided to translate logical voltage description to a physical netlist for designers to connect powers to macros and signals. A second validation mechanism is provided to validate physical implementation adhere to designers' intent according to the set of attributes defined in the logical design.
摘要:
A method is disclosed of associating a mapping function with a configuration construct of a digital design defined by one or more hardware description language (HDL) files. According to the method, in the HDL files, a configuration latch is specified within a design entity forming at least a portion of the digital design. In addition, a Dial is specified that defines a relationship between each of a plurality of input values and a respective one of a plurality of different output values. The HDL files also include a statement that instantiates an instance of the Dial in association with the configuration latch such that a one-to-one correspondence exists between a value contained within the configuration latch and an input value of the instance of the Dial. The HDL files further include a statement associating the Dial with a mapping function that applies a selected transformation to values read from or written to the instance of the Dial.
摘要:
In at least one hardware definition language (HDL) file, at least one design entity containing a functional portion of a digital system is specified. The design entity logically contains first and second latches each having a respective plurality of different possible latch values. With one or more statements, a first Dial instance is associated with the first latch and a second Dial instance is associated with the second latch. A setting of the first Dial instance thus controls which of the plurality of different possible values is loaded in the first latch, and a setting of the second Dial instance controls which of the plurality of different possible values is loaded in the second latch. With a statement, a Register instance is concurrently associated with both the first and the second latches, such that a setting of the Register instance controls the latch values loaded in both the first and second latches.