Abstract:
An electromagnetic signal measuring device includes a carbon nanotube structure. The carbon nanotube structure is capable of producing a sound by absorbing an electromagnetic signal. The electromagnetic signal measuring device is able to determine the intensity and polarization of the electromagnetic signal.
Abstract:
A thermoacoustic device includes a substrate, at least one first electrode, at least one second electrode and a sound wave generator. The at least one first electrode and the at least one second electrode are disposed on the substrate. The sound wave generator is contacting with the at least one first electrode and the at least one second electrode. The sound wave generator is suspended on the substrate via the first electrode and the second electrode. The sound wave generator includes a carbon nanotube structure.
Abstract:
A carbon nanotube film includes a plurality of first carbon nanotubes and a plurality of second carbon nanotubes. The first carbon nanotubes are orientated primarily along a same direction. The second carbon nanotubes have different orientations from that of the plurality of first carbon nanotubes. Each of at least one portion of the second carbon nanotubes contacts with at least two adjacent first carbon nanotubes.
Abstract:
A method for stretching a carbon nanotube film includes providing one or more carbon nanotube films and one or more elastic supporters, attaching at least one portion of the one or more carbon nanotube films to the one or more elastic supporters, and stretching the elastic supporters.
Abstract:
An illuminating device includes a holding element, a light source, and an acoustic member. The acoustic member includes a carbon nanotube structure.
Abstract:
A method for measuring properties of an electromagnetic signal includes following steps. An electromagnetic signal measuring device that includes a carbon nanotube structure is provided. The carbon nanotube structure has a plurality of carbon nanotubes. An electromagnetic signal is received by the carbon nanotube structure in the electromagnetic signal measuring device. The intensity of the electromagnetic signal is measured by a sound produced by the carbon nanotube structure.
Abstract:
An electromagnetic signal measuring device includes a carbon nanotube structure. The carbon nanotube structure is capable of producing a sound by absorbing an electromagnetic signal. The electromagnetic signal measuring device is able to determine the intensity and polarization of the electromagnetic signal.
Abstract:
A sound wave generator includes a carbon nanotube structure. The carbon nanotube structure includes one or more drawn carbon nanotube films. The one or more drawn carbon nanotube films produce sound by means of the thermoacoustic effect.
Abstract:
A method for making a field emission cathode includes the steps of: (a) providing a substrate having a first substrate surface and a second substrate surface opposite to the first substrate surface; (b) forming a conductive film on the first substrate surface; (c) forming a light absorption layer on the conductive film; (d) forming a catalyst film on the light absorption layer; (e) flowing a mixture of a carrier gas and a carbon source gas over the catalyst film; (f) focusing a laser beam on the catalyst film and/or on the second substrate surface to locally heat the catalyst to a predetermined reaction temperature; and (g) growing an array of the carbon nanotubes via the catalyst film to form a field emission cathode.
Abstract:
The present invention relates to a fast acting chemical treatment for preventing the generation of hydrogen sulfide odor by the microbial metabolic activities of sulfate reducing bacteria. Specifically, the invention relates to a method for preventing hydrogen sulfide odor generation in a sulfur species-containing aqueous medium, which includes adding to the aqueous medium an effective amount for the purpose of a sulfide scavenger treatment selected from the group consisting of glyoxal, triazine, n-chlorosuccinimide, and mixtures thereof.