Abstract:
Embodiments of the present invention relate a wing arrangement for an aerial vehicle configured to adjust the vehicles aspect ratio in response to flight mission parameters. The wing arrangement may include a pair of wing assemblies capable of deploying to a first winged position defining a first aspect ratio. Each wing assembly may have a forward inboard wing pivotally connected to the fuselage and an aft inboard wing pivotally connected to the carriage. The forward inboard wing and aft inboard wing of each assembly may be connected, forming a bi-plane configuration. Additionally, the each assembly may include a set of outboard wings configured to telescope from the inboard wings to an extended winged position defining a second aspect ratio greater than the first aspect ratio.
Abstract:
Systems and methods for recovering unmanned aircraft and controlling post-recovery motion of the aircraft are disclosed herein. An aircraft recovery system for recovering an unmanned aircraft in flight in accordance with one embodiment of the disclosure, for example, can include an inflatable aircraft recovery system having an inflatable portion with a generally vertical orientation. The inflatable portion can also include a landing pocket extending at least partially therethrough. The landing pocket is sized to receive at least a portion of a fuselage of the aircraft. The aircraft recovery system can also include a guidance system at least proximate to the landing pocket and positioned to guide the aircraft toward the landing pocket.
Abstract:
A Blended Wing Body SUAV and MUAV is disclosed having a novel airfoil profile, wing configuration, rigging and tractor pull propeller placement that provide improved stability and safety characteristics over prior art SUAVs and MUAVs of comparable size and weight. This unique blended wing design includes wing twist on the outboard wing and an inverted “W” shaped planform to provide lateral and longitudinal stability, and smooth, even flight characteristics throughout the range of the expected flight envelope. These flight characteristics are crucial to providing a stable reconnaissance platform with favorable stall speeds, an increased payload and the ability to hand launch without the danger of exposing ones hands or wrist to a propeller.
Abstract:
Methods and apparatuses for launching unmanned aircraft and other flight devices or projectiles are described. In one embodiment, the aircraft can be launched from an apparatus that includes a launch carriage that moves along a launch guide. The carriage can accelerate when portions of the carriage and/or the launch guide move relative to each other. A gripper carried by the launch carriage can have at least one grip portion in contact with the aircraft while the launch carriage accelerates along the launch axis. The at least one grip portion can move out of contact with the aircraft as the launch carriage decelerates, releasing the aircraft for takeoff. A brake can arrest the motion of the gripper after launch.
Abstract:
Methods and apparatus for a transforming aerial vehicle according to various aspects of the present invention may operate in conjunction with a launch system configured to rotate the aerial vehicle about its longitudinal axis. A lifting surface pivotally connected to the aerial vehicle may be positioned such that the rotation of the aerial vehicle causes the lifting surface to generate a lifting force on the aerial vehicle. This lift causes the aerial vehicle to rise gyroscopically before the lifting surface is rotated to a second position such that the aerial vehicle transforms from a gyroscopic mode to a fixed-wing aerial vehicle. The lifting surface may then be rotated again to allow the aerial vehicle to land as an auto gyro.
Abstract:
Vibration isolation devices and associated systems and methods are disclosed herein. In one embodiment, for example, an unmanned aircraft can include a fuselage having a first fuselage section and a second fuselage section adjacent to and at least approximately longitudinally aligned with the first fuselage section. The aircraft can also include at least one vibration isolation device coupling the first fuselage section to the second fuselage section. The vibration isolation device is translationally stiffer along a longitudinal axis than it is along a lateral and a vertical axis, and rotationally stiffer about a pitch and a yaw axis than it is about a roll axis.
Abstract:
An air vehicle assembly and a corresponding method for launching an air vehicle assembly are provided, along with corresponding control systems and methods. The air vehicle assembly may include a plurality of air vehicles releasably joined to one another during a portion of the flight, such as during take-off and landing. By being releasably joined to one another, such as during take-off and landing, the air vehicles can rely upon and assist one another during the vertical take-off and landing while being designed to have a greater range and higher endurance following the transition to forward flight, either while remaining coupled to or following separation from the other air vehicles. By taking into account the states of the other air vehicles, the control system and method also permit the air vehicles of an air vehicle assembly to collaborate.
Abstract:
An airfoil for a micro air vehicle that includes components enabling the airfoil to adjust the angle of attack (AOA) of the airfoil in response to wind gusts, thereby enabling the airfoil to provide smooth flight. The airfoil may include a first compliant region positioned between an inboard section and a first outboard section and may include a second compliant region between a second outboard section and the inboard section. The compliant regions enable the first and second outboard sections to bend about a leading edge section and move relative to an inboard section. This action creates smoother flight due to numerous aerodynamic advantages such as a change in the angle of attack and improved wind gust rejection due to adaptive washout as a result of the airfoil flexing, twisting and decambering.
Abstract:
An air vehicle assembly and a corresponding method for launching an air vehicle assembly are provided, along with corresponding control systems and methods. The air vehicle assembly may include a plurality of air vehicles releasably joined to one another during a portion of the flight, such as during take-off and landing. By being releasably joined to one another, such as during take-off and landing, the air vehicles can rely upon and assist one another during the vertical take-off and landing while being designed to have a greater range and higher endurance following the transition to forward flight, either while remaining coupled to or following separation from the other air vehicles. By taking into account the states of the other air vehicles, the control system and method also permit the air vehicles of an air vehicle assembly to collaborate.
Abstract:
Methods and apparatuses for launching unmanned aircraft and other flight devices or projectiles are described. In one embodiment, the aircraft can be launched from an apparatus that includes a launch carriage that moves along a launch guide. The carriage can accelerate when portions of the carriage and/or the launch guide move relative to each other. A gripper carried by the launch carriage can have at least one grip portion in contact with the aircraft while the launch carriage accelerates along the launch axis. The at least one grip portion can move out of contact with the aircraft as the launch carriage decelerates, releasing the aircraft for takeoff. A brake can arrest the motion of the gripper after launch.