Abstract:
A column of ternary content addressable memory (TCAM) cells includes a bit line pair that is twisted at a location at or near the center of the column. Data is written to (and read from) TCAM cells located above the twist location with a first bit line polarity. Data is written to (and read from) TCAM cells located below the twist location with a second bit line polarity, opposite the first bit line polarity. As a result, read leakage currents introduced by TCAM cells storing ‘Don't Care’ values are reduced.
Abstract:
A content addressable memory (CAM) may include a plurality of precharge circuits, each coupled to a group of CAM cells and comprising a first precharge path that is temporarily enabled in response to an activated first control signal, and a second precharge path that is temporarily enabled in response to an activated second control signal and a valid indication that indicates whether or not the corresponding group of CAM cells stores valid data, the valid indication being different than the first and second control signals.
Abstract:
An advanced processor comprises a plurality of multithreaded processor cores each having a data cache and instruction cache. A data switch interconnect is coupled to each of the processor cores and configured to pass information among the processor cores. A messaging network is coupled to each of the processor cores and a plurality of communication ports. In one aspect of an embodiment of the invention, the data switch interconnect is coupled to each of the processor cores by its respective data cache, and the messaging network is coupled to each of the processor cores by its respective message station. Advantages of the invention include the ability to provide high bandwidth communications between computer systems and memory in an efficient and cost-effective manner.
Abstract:
A digital linear voltage regulator includes a comparator, a finite state machine, and a current digital-to-analog converter (DAC). The comparator is preferably coupled to receive a reference voltage and an operating voltage supplied to a dynamic load. The comparator generates, during a clock cycle, a binary output based on a comparison between reference and operating voltages. The finite state machine (FSM) is coupled to receive at least one control signal that indicates a target operating state for the digital linear voltage regulator. The FSM receives the binary output from the comparator and generates a digital word, during a clock cycle, based on the target operating state of the digital linear voltage regulator and on the binary output. The current DAC is coupled to the FSM, receives the digital word and delivers current at the desired voltage to the dynamic load.
Abstract:
A CAM column structure includes an interface that drives search data to a plurality of CAM cells via a search line pair. The CAM cells are divided into sections, each section including: a set of CAM cells, a bit line pair coupled to the set of CAM cells, a sense amplifier coupled to the bit line pair, a tri-state read buffer configured to drive read data from the sense amplifier to the search line pair, and a pair of tri-state write buffers configured to drive write data from the search line pair to the bit line pair. In one embodiment, the pair of tri-state write buffers is replaced by a pair of switches that couple the search line pair to the sense amplifier. The search line pair may be segmented by tri-state buffers, which are controlled to drive the search, read and write data along the search line pair.
Abstract:
A CAM device includes a CAM array coupled to a programmable priority encoding (PPE) logic circuit. The CAM array concurrently compares multiple input data with stored data to generate corresponding match results that are provided to the PPE logic circuit. The PPE logic circuit selectively favors the match results of a selected flow over the match results of the other flows in response to a flow select signal, which can be toggled to alternately select the match results of various flows. In this manner, the match results of the selected flow are generated and output even if the HPM index of the selected flow is of a lower priority than those of the non-selected flows, thereby ensuring an even distribution of match results reporting between different flows.
Abstract:
A content addressable memory (CAM) device, method, and method of generating entries for range matching are disclosed. A CAM device (800) according to one embodiment can include a pre-encoder (806) that encodes range bit values W into additional bits E. Additional bits E can indicate compression of range rules according to particular bit pairs. A CAM array (802) can include entries that store compressed range code values (RANGE) with corresponding additional bit values (ENC). Alternate embodiments can include pre-encoders that encode portions of range values (K1 to Ki) in a “one-hot” fashion. Corresponding CAM entries can include encoded value having sections that each represent increasingly finer divisions of a range space.
Abstract:
A method and apparatus for performing pipelined capacitive folding and interpolation analog-to-digital conversion. In one embodiment, the apparatus comprises a multistage pipelined analog-to-digital converter having: a distributed sample/hold and preamp, folding and interpolation unit which combines a plurality of preamplified signals using a capacitive folding and capacitive interpolation; and a decoding unit coupled to decode the output signals from the folding and interpolation unit. The distributed sample/hold and preamp drastically improves the input dynamic range and hence increases ADC over all linearity. This technique offers an inherent dynamic offset cancellation in every sample and can be implemented in submicron CMOS, using the core digital supply.
Abstract:
A memory device is provided for performing writing operations on memory cells while maintaining a stability thereof. A memory array is provided including a plurality of memory cells. Additionally, segmented write bitlines are provided for performing writing operations on the memory cells while maintaining a stability thereof.
Abstract:
The invention relates to a crossbar switch controller including an input terminal configured to receive a set of service request signals from a set of virtual output queues each comprising a set of packets. The invention also includes a matrix circuit coupled to the input terminal and configured to represent the set of service request signals in the form of a matrix, wherein each service request signal is described by a row position M and a column position N. The invention further includes an output terminal configured to receive a portion of the set of packets during an epoch, an arbiter circuit configured to iteratively scan the matrix during the epoch and issue the set of grant signals to the virtual output queues to determine which service requests are granted, and an arbiter controller configured to initiate the arbiter circuit with an array of non-conflicting matrix elements. Whereby, the arbiter circuit scans the matrix during a first epoch, issues the set of grant signals, allows the set of granted service requests to substantially complete, and if necessary, scans the matrix during subsequent epochs. The invention also relates to a crossbar switch controller including an arbitration pre-processor coupled to the input terminal and the matrix circuit, and configured to represent the set of service request signals in the form of a mapping matrix, and further configured to transform a first mapping position of the service request signal to a second mapping position based, in part, on a mapping algorithm. The invention also includes an arbitration post-processor coupled to the output terminal and the matrix circuit, and further configured to transform the second mapping position of the service request signal back to the first mapping position.