Abstract:
An auxiliary support device for flip touch screen includes a main body and an upper cover having a touch panel. The main body is preformed with a cavity for assembling with a base seat. The upper cover is preformed with an elongated recess corresponding to the cavity. A slide rail is assembled in the elongated recess. One end of a link member is movably pivotally connected with an outer end of the base seat. A bottom end of a slide member is movably pivotally connected with an inner end of the base seat. The slide member is assembled in the slide rail. The other end of the link member is slidably connected with of a surface of the slide member. When the upper cover is turned upward, the link member is turned upward with the slide member to obliquely support the upper cover.
Abstract:
A dual-shaft pivot device includes a resilient guide assembly composed of a plurality of resilient guide members and first and second pivotal shafts. Each resilient guide member has two accommodation portions at two ends thereof and a connecting groove communicating with the two accommodation portions. One end of the inner wall of each accommodation portion, far away from the connecting groove, has an end protrusion. The first and second pivotal shafts have middle portions which are inserted in the accommodation portions of the resilient guide member. Each middle portion has at least one middle flat surface to get contact with the end protrusion for the middle portion to push the end protrusion during turning to bring resilient deformation of each accommodation portion.
Abstract:
A multi-segment rotary shaft structure includes a driving joint assembly and a driven joint assembly. The driving joint assembly at least includes two opposite joint plates and a middle link plate assembly engaged therebetween. The driven joint assembly is disposed between the opposite joint plates and includes at least two driven plates. Opposite ends of the driven plates are formed with synchronous driving sections drivingly engaged with each other. Inward ends of the opposite joint plates are linked with outward ends of the driven plates. Outward ends of the middle link plate assembly are linked with the inward ends of the driven plates. The driving joint assembly and driven joint assembly are stringed and pivotally connected and combined, whereby the joint plates can be freely rotated around multiple rotational centers.
Abstract:
A multidirectional support structure for tablet display apparatus includes a support member having a first end section and a second end section opposite to the first end section. The first end section is pivotally connected with an angle adjustment seat. The angle adjustment seat is further pivotally connected with a rotatable connection assembly. The connection assembly is formed with a receiving space for receiving the tablet display apparatus. The second end section of the support member is pivotally connected with one side of a base seat. The other side of the base seat is pivotally connected with a board body. The board body can be connected with multiple press keys as necessary to form a keyboard. Accordingly, the tablet display apparatus can be co-used with the keyboard and rotated and tilted by different angles and supported in different inclined positions.
Abstract:
A double-shaft type rotary shaft pivotal positioning structure includes an elastic guide assembly and two pivot shafts. The elastic guide assembly includes two containing portions which are outwardly communicated and formed with two opposite elastic arms and two corresponding planed press-contact sides. The pivot shafts are respectively centrally provided with center section portions that are utilized to respectively enter the containing portions of the elastic guide assembly and each of which includes a periphery provided with two center section planed surfaces capable of being pressingly contacted with the press-contact sides of the elastic guide assembly. When the pivot shafts are synchronously pivoted close to a preset positioning angle, the center section planed surfaces of the pivot shafts are capable of rotatably attaching toward the press-contact sides of the elastic guide assembly, thereby enabling the pivot shafts to approach and be positioned at the preset positioning angle.
Abstract:
A synchronous movement device applied to dual-shaft system includes a first shaft and a second shaft, which are assembled with each other and synchronously rotatable. The synchronous movement device further includes a driver disposed on the first shaft and a reactor disposed on the second shaft and a link unit connected between the driver and the reactor. When the first shaft drives the driver to rotate, the driver pushes the link unit to move along the first and second shafts to forcedly push the reactor to rotate in a direction reverse to the moving direction of the driver. Accordingly, the first and second shafts are synchronously rotated.
Abstract:
A synchronous movement device applied to dual-shaft system includes a first shaft and a second shaft, which are assembled with each other and synchronously rotatable. The synchronous movement device further includes a driver disposed on the first shaft and a reactor disposed on the second shaft and a link unit connected between the driver and the reactor. When the first shaft drives the driver to rotate, the driver pushes the link unit to move along the first and second shafts to forcedly push the reactor to rotate in a direction reverse to the moving direction of the driver. Accordingly, the first and second shafts are synchronously rotated.
Abstract:
A rotary shaft transmission structure, which is designed with a simplified structure to provide a smooth and stable transmission of a rotary shaft and to reduce the occurrence of rotational torsion variation of the rotary shaft, includes a combination of at least one rotor and a traction portion. The rotor includes a shaft hole and a bolt bore, in which the shaft hole is utilized to pivot the rotary shaft so that the rotor can be rotated by the rotary shaft, the shaft hole transversely passed through by at least a plan area is utilized to retain the traction portion, and the rotary shaft is utilized to press the traction portion via the plan area, thereby forming a fixation function.
Abstract:
A dual-shaft synchronous motion device includes a first shaft and a second shaft; a first rotor and a third rotor disposed on the first shaft and turned synchronously; a second rotor and a fourth rotor disposed on the second shaft and turned synchronously; and a tractive member disposed between the first rotor (the third rotor) and the second rotor (the fourth rotor). When the first shaft drives the first and third rotors to turn, the tractive member brings the second rotor to turn reversely relative to the first rotor. The fourth rotor makes the tractive member drive the third rotor so that the first and second shafts are turned synchronously.
Abstract:
An auxiliary support device for flip touch screen includes a main body and an upper cover having a touch panel. The main body is preformed with a cavity for assembling with a base seat. The upper cover is preformed with an elongated recess corresponding to the cavity. A slide rail is assembled in the elongated recess. One end of a link member is movably pivotally connected with an outer end of the base seat. A bottom end of a slide member is movably pivotally connected with an inner end of the base seat. The slide member is assembled in the slide rail. The other end of the link member is slidably connected with of a surface of the slide member. When the upper cover is turned upward, the link member is turned upward with the slide member to obliquely support the upper cover.