Abstract:
Font recognition and similarity determination techniques and systems are described. In a first example, localization techniques are described to train a model using machine learning (e.g., a convolutional neural network) using training images. The model is then used to localize text in a subsequently received image, and may do so automatically and without user intervention, e.g., without specifying any of the edges of a bounding box. In a second example, a deep neural network is directly learned as an embedding function of a model that is usable to determine font similarity. In a third example, techniques are described that leverage attributes described in metadata associated with fonts as part of font recognition and similarity determinations.
Abstract:
Image editing techniques are disclosed that support a number of physically-based image editing tasks, including object insertion and relighting. The techniques can be implemented, for example in an image editing application that is executable on a computing system. In one such embodiment, the editing application is configured to compute a scene from a single image, by automatically estimating dense depth and diffuse reflectance, which respectively form the geometry and surface materials of the scene. Sources of illumination are then inferred, conditioned on the estimated scene geometry and surface materials and without any user input, to form a complete 3D physical scene model corresponding to the image. The scene model may include estimates of the geometry, illumination, and material properties represented in the scene, and various camera parameters. Using this scene model, objects can be readily inserted and composited into the input image with realistic lighting, shadowing, and perspective.
Abstract:
Systems and methods are discussed to separate the specular reflectivity and/or the diffuse reflectivity from an input image. Embodiments of the invention can be used to determine the specular chromaticity by iteratively solving one or more objective functions. An objective function can include functions that take into account the smooth gradient of the specular chromaticity. An objective function can take into account the interior chromatic homogeneity of the diffuse chromaticity and/or the sharp changes between chromaticity. Embodiments of the invention can also be used to determine the specular chromaticity of an image using a pseudo specular-free image that is calculated from the input image and a dark channel image that can be used to iteratively solve an objective function(s).
Abstract:
An initialization technique is described for determining and reconstructing a set of initial keyframes covering a portion of an image sequence according to point trajectories that may, for example, be used in an adaptive reconstruction algorithm implemented by a structure from motion (SFM) technique. A goal of the initialization technique is to compute an initial reconstruction from a subset of frames in the image sequence. Two initial keyframes are selected from a set of temporally spaced keyframe candidates, the two initial keyframes are reconstructed, and then one or more additional keyframes between the two initial keyframes are selected and reconstructed. Output of the initialization technique is a set of initial keyframes and the initial reconstruction.
Abstract:
A non-keyframe reconstruction technique is described for selecting and reconstructing keyframes that have not yet been included in a reconstruction of an input image sequence to provide a better reconstruction in a structure from motion (SFM) technique. The technique may, for example, be used in an adaptive reconstruction algorithm implemented by a general SFM technique. This technique may add and reconstruct non-keyframes to a set of keyframes already generated by an initialization technique and reconstructed by adaptive and optimization techniques for iteratively selecting and reconstructing additional keyframes. Camera motion and intrinsic parameters may be computed for non-keyframes by optimizing a cost function. Output of the non-keyframe reconstruction technique may include at least camera intrinsic parameters and Euclidean motion parameters for the images in the input image sequence.
Abstract:
In techniques for adaptive denoising with internal and external patches, example image patches taken from example images are grouped into partitions of similar patches, and a partition center patch is determined for each of the partitions. An image denoising technique is applied to image patches of a noisy image to generate modified image patches, and a closest partition center patch to each of the modified image patches is determined. The image patches of the noisy image are then classified as either a common patch or a complex patch of the noisy image, where an image patch is classified based on a distance between the corresponding modified image patch and the closest partition center patch. A denoising operator can be applied to an image patch based on the classification, such as applying respective denoising operators to denoise the image patches that are classified as the common patches of the noisy image.
Abstract:
Systems and methods are provided for providing learned, piece-wise patch regression for image enhancement. In one embodiment, an image manipulation application generates training patch pairs that include training input patches and training output patches. Each training patch pair includes a respective training input patch from a training input image and a respective training output patch from a training output image. The training input image and the training output image include at least some of the same image content. The image manipulation application determines patch-pair functions from at least some of the training patch pairs. Each patch-pair function corresponds to a modification to a respective training input patch to generate a respective training output patch. The image manipulation application receives an input image generates an output image from the input image by applying at least some of the patch-pair functions based on at least some input patches of the input image.
Abstract:
Image classification techniques using images with separate grayscale and color channels are described. In one or more implementations, an image classification network includes grayscale filters and color filters which are separate from the grayscale filters. The grayscale filters are configured to extract grayscale features from a grayscale channel of an image, and the color filters are configured to extract color features from a color channel of the image. The extracted grayscale features and color features are used to identify an object in the image, and the image is classified based on the identified object.
Abstract:
In embodiments of spatially coherent nearest neighbor fields, initial matching patches of a nearest neighbor field can be determined at image grid locations of a first digital image and a second digital image. Spatial coherency can be enforced for each matching patch in the second digital image with reference to respective matching patches in the first digital image based on motion data of neighboring matching patches. A multi-resolution iterative process can then update each spatially coherent matching patch based on overlapping grid regions of the matching patches that are evaluated for matching regions of the first and second digital images. An optimal, spatially coherent matching patch can be selected for each of the image grid locations of the first and second digital images based on iterative interaction to enforce the spatial coherency of each matching patch and the multi-resolution iterative process to update each spatially coherent matching patch.
Abstract:
Systems and methods are discussed to separate the specular reflectivity and/or the diffuse reflectivity from an input image. Embodiments of the invention can be used to determine the specular chromaticity by iteratively solving one or more objective functions. An objective function can include functions that take into account the smooth gradient of the specular chromaticity. An objective function can take into account the interior chromatic homogeneity of the diffuse chromaticity and/or the sharp changes between chromaticity. Embodiments of the invention can also be used to determine the specular chromaticity of an image using a pseudo specular-free image that is calculated from the input image and a dark channel image that can be used to iteratively solve an objective function(s).