Font Attributes for Font Recognition and Similarity

    公开(公告)号:US20170098138A1

    公开(公告)日:2017-04-06

    申请号:US14876667

    申请日:2015-10-06

    Abstract: Font recognition and similarity determination techniques and systems are described. In a first example, localization techniques are described to train a model using machine learning (e.g., a convolutional neural network) using training images. The model is then used to localize text in a subsequently received image, and may do so automatically and without user intervention, e.g., without specifying any of the edges of a bounding box. In a second example, a deep neural network is directly learned as an embedding function of a model that is usable to determine font similarity. In a third example, techniques are described that leverage attributes described in metadata associated with fonts as part of font recognition and similarity determinations.

    Single-image specular reflection separation
    113.
    发明授权
    Single-image specular reflection separation 有权
    单像镜面反射分离

    公开(公告)号:US09418447B2

    公开(公告)日:2016-08-16

    申请号:US13859468

    申请日:2013-04-09

    Abstract: Systems and methods are discussed to separate the specular reflectivity and/or the diffuse reflectivity from an input image. Embodiments of the invention can be used to determine the specular chromaticity by iteratively solving one or more objective functions. An objective function can include functions that take into account the smooth gradient of the specular chromaticity. An objective function can take into account the interior chromatic homogeneity of the diffuse chromaticity and/or the sharp changes between chromaticity. Embodiments of the invention can also be used to determine the specular chromaticity of an image using a pseudo specular-free image that is calculated from the input image and a dark channel image that can be used to iteratively solve an objective function(s).

    Abstract translation: 讨论系统和方法以从输入图像分离镜面反射率和/或漫反射率。 本发明的实施例可用于通过迭代地求解一个或多个目标函数来确定镜面色度。 目标函数可以包括考虑到镜面色度的平滑梯度的函数。 目标函数可以考虑漫反射色度的内部色彩均匀性和/或色度之间的急剧变化。 本发明的实施例还可以用于使用从输入图像计算的伪无镜像图像和可用于迭代地求解目标函数的暗通道图像来确定图像的镜面色度。

    Opt-keyframe reconstruction for robust video-based structure from motion
    115.
    发明授权
    Opt-keyframe reconstruction for robust video-based structure from motion 有权
    选择关键帧重建,用于运动中基于视频的健壮结构

    公开(公告)号:US09292937B2

    公开(公告)日:2016-03-22

    申请号:US14801432

    申请日:2015-07-16

    Inventor: Hailin Jin

    Abstract: A non-keyframe reconstruction technique is described for selecting and reconstructing keyframes that have not yet been included in a reconstruction of an input image sequence to provide a better reconstruction in a structure from motion (SFM) technique. The technique may, for example, be used in an adaptive reconstruction algorithm implemented by a general SFM technique. This technique may add and reconstruct non-keyframes to a set of keyframes already generated by an initialization technique and reconstructed by adaptive and optimization techniques for iteratively selecting and reconstructing additional keyframes. Camera motion and intrinsic parameters may be computed for non-keyframes by optimizing a cost function. Output of the non-keyframe reconstruction technique may include at least camera intrinsic parameters and Euclidean motion parameters for the images in the input image sequence.

    Abstract translation: 描述了非关键帧重建技术,用于选择和重建尚未包括在输入图像序列的重建中的关键帧,以在运动(SFM)技术的结构中提供更好的重建。 该技术可以例如用于通过一般SFM技术实现的自适应重建算法中。 该技术可以将非关键帧添加到已经由初始化技术生成的一组关键帧中,并通过用于迭代地选择和重建附加关键帧的自适应和优化技术来重建非关键帧。 可以通过优化成本函数来计算非关键帧的相机运动和内在参数。 非关键帧重构技术的输出可以至少包括用于输入图像序列中的图像的相机本征参数和欧氏距离运动参数。

    Adaptive denoising with internal and external patches
    116.
    发明授权
    Adaptive denoising with internal and external patches 有权
    自适应去噪内部和外部补丁

    公开(公告)号:US09189834B2

    公开(公告)日:2015-11-17

    申请号:US14080659

    申请日:2013-11-14

    Abstract: In techniques for adaptive denoising with internal and external patches, example image patches taken from example images are grouped into partitions of similar patches, and a partition center patch is determined for each of the partitions. An image denoising technique is applied to image patches of a noisy image to generate modified image patches, and a closest partition center patch to each of the modified image patches is determined. The image patches of the noisy image are then classified as either a common patch or a complex patch of the noisy image, where an image patch is classified based on a distance between the corresponding modified image patch and the closest partition center patch. A denoising operator can be applied to an image patch based on the classification, such as applying respective denoising operators to denoise the image patches that are classified as the common patches of the noisy image.

    Abstract translation: 在使用内部和外部补丁进行自适应去噪的技术中,从示例图像获取的示例图像修补程序分组到类似修补程序的分区中,并为每个分区确定分区中心修补程序。 将图像去噪技术应用于噪声图像的图像补丁以产生修改后的图像斑块,并确定每个修改后的图像斑块的最接近的分割中心斑块。 然后,噪声图像的图像块被分类为噪声图像的公共补丁或复杂补丁,其中基于相应修改的图像补丁和最接近的分割中心补丁之间的距离对图像补丁进行分类。 可以基于分类将去噪算子应用于图像补片,例如应用相应的去噪算子去除被分类为噪声图像的公共斑块的图像斑块。

    Learned piece-wise patch regression for image enhancement
    117.
    发明授权
    Learned piece-wise patch regression for image enhancement 有权
    学习了片面补丁回归图像增强

    公开(公告)号:US09117262B2

    公开(公告)日:2015-08-25

    申请号:US13691190

    申请日:2012-11-30

    CPC classification number: G06T5/002 G06T2207/20081 G06T2207/20084

    Abstract: Systems and methods are provided for providing learned, piece-wise patch regression for image enhancement. In one embodiment, an image manipulation application generates training patch pairs that include training input patches and training output patches. Each training patch pair includes a respective training input patch from a training input image and a respective training output patch from a training output image. The training input image and the training output image include at least some of the same image content. The image manipulation application determines patch-pair functions from at least some of the training patch pairs. Each patch-pair function corresponds to a modification to a respective training input patch to generate a respective training output patch. The image manipulation application receives an input image generates an output image from the input image by applying at least some of the patch-pair functions based on at least some input patches of the input image.

    Abstract translation: 提供了系统和方法,用于为图像增强提供学习的分段补丁回归。 在一个实施例中,图像处理应用产生训练补丁对,其包括训练输入补丁和训练输出补丁。 每个训练补丁对包括来自训练输入图像的相应训练输入补丁和来自训练输出图像的相应训练输出补丁。 训练输入图像和训练输出图像包括至少一些相同的图像内容。 图像处理应用程序从至少一些训练补丁对确定补丁对功能。 每个补丁对功能对应于对相应的训练输入补丁的修改以生成相应的训练输出补丁。 图像处理应用程序接收输入图像,基于输入图像的至少一些输入图像块,通过应用至少一些补丁对功能,从输入图像生成输出图像。

    Image Classification Using Images with Separate Grayscale and Color Channels
    118.
    发明申请
    Image Classification Using Images with Separate Grayscale and Color Channels 有权
    使用具有独立灰度和彩色通道的图像的图像分类

    公开(公告)号:US20150139536A1

    公开(公告)日:2015-05-21

    申请号:US14081684

    申请日:2013-11-15

    CPC classification number: G06K9/6267 G06K9/46 G06K9/4652

    Abstract: Image classification techniques using images with separate grayscale and color channels are described. In one or more implementations, an image classification network includes grayscale filters and color filters which are separate from the grayscale filters. The grayscale filters are configured to extract grayscale features from a grayscale channel of an image, and the color filters are configured to extract color features from a color channel of the image. The extracted grayscale features and color features are used to identify an object in the image, and the image is classified based on the identified object.

    Abstract translation: 描述使用具有单独灰度和颜色通道的图像的图像分类技术。 在一个或多个实现中,图像分类网络包括与灰阶滤波器分离的灰度滤波器和滤色器。 灰度滤波器被配置为从图像的灰度级通道提取灰度特征,并且滤色器被配置为从图像的颜色通道中提取颜色特征。 提取的灰度特征和颜色特征用于识别图像中的对象,并且基于识别的对象对图像进行分类。

    Spatially coherent nearest neighbor fields
    119.
    发明授权
    Spatially coherent nearest neighbor fields 有权
    空间相干最近邻域

    公开(公告)号:US09025822B2

    公开(公告)日:2015-05-05

    申请号:US13794125

    申请日:2013-03-11

    Abstract: In embodiments of spatially coherent nearest neighbor fields, initial matching patches of a nearest neighbor field can be determined at image grid locations of a first digital image and a second digital image. Spatial coherency can be enforced for each matching patch in the second digital image with reference to respective matching patches in the first digital image based on motion data of neighboring matching patches. A multi-resolution iterative process can then update each spatially coherent matching patch based on overlapping grid regions of the matching patches that are evaluated for matching regions of the first and second digital images. An optimal, spatially coherent matching patch can be selected for each of the image grid locations of the first and second digital images based on iterative interaction to enforce the spatial coherency of each matching patch and the multi-resolution iterative process to update each spatially coherent matching patch.

    Abstract translation: 在空间相干最近邻域的实施例中,可以在第一数字图像和第二数字图像的图像网格位置处确定最近邻域的初始匹配块。 基于相邻匹配补丁的运动数据,参考第一数字图像中的相应匹配补丁,可以针对第二数字图像中的每个匹配补丁实施空间一致性。 然后,多分辨率迭代过程可以基于为第一和第二数字图像的匹配区域评估的匹配块的重叠网格区域来更新每个空间相干匹配块。 可以基于迭代交互来选择针对第一和第二数字图像的每个图像网格位置的最佳空间相干匹配块,以强制每个匹配块的空间一致性和多分辨率迭代过程以更新每个空间相干匹配 补丁。

    Single-image Specular Reflection Separation
    120.
    发明申请
    Single-image Specular Reflection Separation 有权
    单图像镜面反射分离

    公开(公告)号:US20140301637A1

    公开(公告)日:2014-10-09

    申请号:US13859468

    申请日:2013-04-09

    Abstract: Systems and methods are discussed to separate the specular reflectivity and/or the diffuse reflectivity from an input image. Embodiments of the invention can be used to determine the specular chromaticity by iteratively solving one or more objective functions. An objective function can include functions that take into account the smooth gradient of the specular chromaticity. An objective function can take into account the interior chromatic homogeneity of the diffuse chromaticity and/or the sharp changes between chromaticity. Embodiments of the invention can also be used to determine the specular chromaticity of an image using a pseudo specular-free image that is calculated from the input image and a dark channel image that can be used to iteratively solve an objective function(s).

    Abstract translation: 讨论系统和方法以从输入图像分离镜面反射率和/或漫反射率。 本发明的实施例可用于通过迭代地求解一个或多个目标函数来确定镜面色度。 目标函数可以包括考虑到镜面色度的平滑梯度的函数。 目标函数可以考虑漫反射色度的内部色彩均匀性和/或色度之间的急剧变化。 本发明的实施例还可以用于使用从输入图像计算的伪无镜像图像和可用于迭代地求解目标函数的暗通道图像来确定图像的镜面色度。

Patent Agency Ranking