摘要:
For wireless networks that transmit synchronization signals allowing user equipment to synchronize to cells within the network and transmit reference signals allowing user equipment to determine cell identities, a method and apparatus taught herein advantageously link the synchronization signal sequences to the reference signal sequences according to a defined mapping. The linking simplifies the cell search process by allowing user equipment to determine cell identities based on mapping detected synchronization signal sequences to the corresponding reference signal or to the corresponding subset of reference signals in embodiments where there are more reference signal sequences than synchronization signal sequences. In at least one embodiment, the network is a 3G LTE network and at least the Primary Synchronization Signal (P-SyS) sequences are linked to the Downlink (DL) reference symbol sequences according to a defined mapping, thereby allowing to user equipment to determine cell identities from detected P-SyS sequences.
摘要:
A method of supporting frequency-selective repeaters (eNodeRs) in a wireless telecommunication system. A base station (eNodeB) classifies User Equipments (UEs) into two categories or lists of users: a white list containing UEs that may need the assistance of repeaters, and a black list containing UEs that do not need repeater assistance. The eNodeB transmits one of these two lists to the eNodeRs. The eNodeRs do not amplify resource blocks (RBs) scheduled for black list UEs. Each repeater may decide on its own whether to amplify signals for a non-black list UE by measuring signals from the UE and comparing them with predefined criteria.
摘要:
A method in a first base station for supporting DTX is provided. The first base station serves a first cell being in an active mode. The first base station communicates with a user equipment within the first cell. The first base station is comprised in a radio communications system further comprising the user equipment and a second base station serving a second cell being in a non observable mode. The first base station sends (602) to the second base station, a request to switch the second cell state from a non observable mode to an observable mode. It further sends (603) to the user equipment or to the second base station, a request to perform signalling between the user equipment and the second base station for quality measurements. The first base station then obtains (604) information that handover is feasible, based on quality measurement of the performed signalling. The first base station sends (605) to the second base station, a request to prepare handover of the user equipment from the first cell to the second cell, and further (606) to the user equipment, a command to perform handover to the second cell.
摘要:
A mobile communication system includes a network based aggregation controller for controlling aggregation of component carriers from a first spectrum and a second spectrum. In addition, the mobile communication system includes a group of mobile terminals. The network based aggregation controller is configured to send a group message on at least one component carrier of the first spectrum to the group of mobile terminals. The mobile terminals receive the group message. A terminal based aggregation controller in each of the mobile terminals is configured to control operation of the respective mobile terminal with respect to the at least one component carrier of the second spectrum. This control is accomplished in response to the received group message.
摘要:
A method for determining a random access transmission power setting of a first communication device in a communications network includes receiving, at a first communication device, data from a second communication device indicating a random access reception power. The method also includes determining a desired random access reception power of the second communication device based on the received data and a parameter of random access configuration that influences a detection performance of the random access at the second communication device and determining a random access transmission power to use based on the desired random access reception power. The method additionally includes setting a random access transmission power setting of the first communication device in accordance with the determined random access transmission power.
摘要:
A wireless communication node (10) dynamically estimates passive intermodulation (PIM) interference coupled into the node's receive path from the transmission of a composite signal through the node's transmit path. The node (10) then cancels the estimated PIM interference in the receive path. In some embodiments, the node dynamically estimates the PIM interference as a function of the composite signal that models PIM interference generation and coupling in the node (10) according to one or more coefficients (30). The coefficients (30) may be determined by transmitting a test signal (34) during a test stage, when the node (10) is not scheduled to receive any signal. Later, when the composite signal (18) is transmitted, the node (10) uses the coefficients (10) to dynamically estimate and cancel the resulting PIM interference.
摘要:
The invention relates to a method in a first communication device within a communications network for designing a random access transmission power setting of the first communication device comprising to receive (42) data from a second communication device on a radio channel indicating a random access reception power. The first communication device determines (44) a desired random access reception power of the second communication device based on the received data and a parameter of random access configuration that influences a detection performance of the random access at the second communication device. Based on the desired random access reception power the first communication device determines (46) a random access transmission power to use and the first communication device designs (48) the random access transmission power setting of the first communication device in accordance with the determined random access transmission to use.
摘要:
A method in a radio network node for dynamic carrier mode switching is provided. The radio network node is comprised in a radio communications system. The radio network node is configured to operate in a legacy mode and is further configured to operate in a non legacy mode. At least one carrier is operated so that it switches (602) from non legacy mode to legacy mode. When operating the carrier in the legacy mode, the radio network node signals (603) with a user equipment. The user equipment operates in legacy mode, but can not operate in non legacy mode. The radio network node then operates the at least one carrier so that it switches (604) from legacy mode back to non legacy mode.
摘要:
A Radio Base Station (RBS) and method of operating the same are provided. The RBS may enable a fast and flexible reconfiguration of the system from a first configuration to a second confirmation where the RBS is triggered to initiate a system reconfiguration and the reconfiguration is performed by starting a new cell with the wanted new configuration in parallel with the original cell. During a certain time period, both the original and the new cell are available. Thereafter, the original cell is shut down. The time offset between the start up of the new cell and the shut down of the original cell may be long enough to ensure that user equipment associated with the original cell can be handed over or can reselect the new cell. The time offset may be short enough to reduce the interference between the original and new cells.
摘要:
According to some embodiments, a method in a user equipment (920) is provided. According to the method, the user equipment receives, over a first cell (970) configured on a carrier frequency, at least one parameter associated with a second cell (980) configured on a carrier frequency. The at least one parameter comprises a cell identity. The user equipment (920) then derives (1050) at least one physical layer characteristic for the second cell (980) based on the received at least one parameter. Thereby, the user equipment (920) is able to receive transmissions over the second cell (980), even if it could not initially detect the presence of the cell.