Abstract:
The present invention relates to novel sulfoperoxycarboxylic acid compounds, and methods for making and using them. The sulfoperoxycarboxylic compounds of the invention are storage stable, water soluble and have low to no odor. Further, the compounds of the present invention can be formed from non-petroleum based renewable materials. The compounds of the present invention can be used as antimicrobials, and bleaching agents. The compounds of the present invention are also suitable for use as coupling agents.
Abstract:
The present invention relates to novel combined laundry detergent, bleach, and antimicrobial composition incorporating novel sulfoperoxycarboxylic acid compounds, and methods for making and using them. The sulfoperoxycarboxylic compounds used in compositions of the invention are storage stable, water soluble and have low to no odor. Compositions of the invention may be in the form of a liquid, a solid, or a gel. The sulfoperoxycarboxylic compounds useful in preparing compositions of the present invention can be formed from non-petroleum based renewable materials.
Abstract:
The present invention relates to novel sulfoperoxycarboxylic acid compounds, and methods for making and using them. The sulfoperoxycarboxylic compounds of the invention are storage stable, water soluble and have low to no odor. Further, the compounds of the present invention can be formed from non-petroleum based renewable materials. The compounds of the present invention can be used as antimicrobials, and bleaching agents. The compounds of the present invention are also suitable for use as coupling agents.
Abstract:
Highly acidic, stabilized peroxycarboxylic acid compositions are disclosed as having both improved antimicrobial efficacy in comparison to conventional peroxyoctanoic acid and peroxyacetic acid compositions for sanitizing applications, and improved transport and shipping stability. In particular, low odor and low/no VOC compositions having dual functionality as both acid wash and sanitizing compositions are disclosed.
Abstract:
Methods and systems for temperature-controlled, on-site generation of peracids, namely peroxycarboxylic acids and peroxycarboxylic acid forming compositions are disclosed. In particular, methods for using an adjustable biocide formulator or generator system overcome the limitations of temperature on the kinetics of the peracid generation and/or peracid decomposition inside an adjustable biocide formulator or generator system. The methods include the controlling of the temperature of at least one raw starting material, namely water, to improve upon methods of on-site generation of peracids. The methods allow for the generation of user-selected chemistry without regard to the ambient temperatures of the raw starting materials and/or the biocide formulator or generator system.
Abstract:
The present invention relates to compositions of peracids, such as peroxycarboxylic acids, having reduced odor compared to conventional peracid compositions. The invention further relates to methods employing such compositions, and methods of making these compositions. Typically, the reduced-odor antimicrobial compositions include an alcohol for the esterification reaction to remove short- to mid-chain length malodorous carboxylic acids.
Abstract:
Peracid stable fluorescent active compounds in highly acidic, equilibrium peroxycarboxylic acid sanitizing compositions are disclosed as having improved fluorescent stability allowing for monitoring of peroxycarboxylic acid concentration by conductivity and/or optical sensors. Beneficially, the compositions are also low odor and low/no VOC dual functioning acid wash and sanitizing compositions.
Abstract:
The present invention relates to novel sulfoperoxycarboxylic acid compounds, and methods for making and using them. The sulfoperoxycarboxylic compounds of the invention are storage stable, water soluble and have low to no odor. Further, the compounds of the present invention can be formed from non-petroleum based renewable materials. The compounds of the present invention can be used as antimicrobials, and bleaching agents. The compounds of the present invention are also suitable for use as coupling agents.
Abstract:
Highly acidic, stabilized peroxycarboxylic acid compositions are disclosed as having both improved antimicrobial efficacy in comparison to conventional peroxyoctanoic acid and peroxyacetic acid compositions for sanitizing applications, and improved transport and shipping stability. In particular, low odor and low/no VOC compositions having dual functionality as both acid wash and sanitizing compositions are disclosed.