Abstract:
A camera according to the present invention comprises a sensor array wherein multiple pixels are arrayed in the base-length direction, a focusing unit for performing focusing of the camera based on the image output from the sensor array, a first detection unit for detecting the movement of the image signals in the base-length direction, a second detection unit for detecting the change in a predetermined pixel signal of the image signals over time, and a movement detection unit for performing movement detection based on the output from the first and second detection units.
Abstract:
This invention constitutes a measuring distance device including a sensor array which detects image signals of an object in a finder screen, a projection unit which projects a signal light on the object, a selection unit which selects a detection area for the image signal of the sensor array, a change unit (control unit) which makes detection areas selected by the selection unit different from each other when the signal light is projected or is not projected by the projection unit, and a focus adjustment unit which performs focus adjustment by an image signal output in the detection area of the sensor array selected by the selection unit. A reduction in time lag is achieved without increasing a read area, and an influence of harmful light is reduced. This device which can perform an accurate and high-speed process can be applied to a hybrid AF camera.
Abstract:
A range finder device includes a light projecting section for projecting range finding light onto an object and a light receiving section for monitoring the image pattern of the object. An integrating circuit integrates an output signal from the light receiving section. A steady light component removing section prevents an output signal accompanying steady light irradiated steadily onto the light receiving section from being fed to the integrating circuit. A control section sets a first mode in which the steady light component removing section is operated during range finding or a second mode in which the steady light component removing section is not operated based on an output signal from the light receiving section.
Abstract:
The present invention provides a distance measuring apparatus for a camera capable of deciding priority of a plurality of types of autofocusing methods automatically and rapidly and achieving high-speed, accurate focusing under various shooting conditions. This device uses jointly, for example, two types of AFs: active type AF whereby a distance to the subject is measured based on a signal generated by reception of reflected signal light from a subject when distance measuring light is cast on the subject, and passive type AF whereby a distance to the subject is measured by using a light reception signal that corresponds to the subject image, and changes the priority of both types of AFs in response to an output of the shooting condition detecting part and performs a distance measuring operation.
Abstract:
A battery check system for use in a camera has a monitor circuit and a control circuit. The monitor circuit detects the condition of a battery used in the camera. The control circuit controls the operation of the monitor circuit and controls the operation of the camera according to the output of the monitor circuit. The control circuit causes the monitor circuit to detect the changed condition of the battery and determines a detection timing of the voltage of the battery according to the detected condition of the battery.
Abstract:
A failure detection and storage device provided with a failure factor detection unit for detecting generation of a failure factor when the failure factor being capable of causing a failure of a camera is generated, a date-and-time information output unit for outputting date-and-time information which corresponds to a date and a time at which the failure factor is generated, a storage unit being capable of storing failure factor information representing the failure factor, the generation of which is detected by the failure factor detection unit, and date-and-time information outputted the date-and-time information output unit, a display unit being capable of displaying the information stored by the storage unit and a control unit for determining a level of the failure factor, the generation of which is detected by the failure factor detection unit, and for deciding whether or not at least one of the failure factor information, the generation of which is detected by the failure factor detection unit, and the date-and-time information, which is outputted by the date-and-time output unit, is stored by the storage unit.
Abstract:
A camera having a range finder in accordance with the present invention has a range finder comprising a CPU responsible for overall control, a range finding unit in which two light-receiving lenses, two sensor arrays, a switching circuit, and an integration circuit are incorporated, a light projection LED, and an AF IC. The switching circuit is used to change the destination of outputs of the sensor arrays to an A/D conversion circuit, whereby range finding is carried out in a passive AF mode. Moreover, the switching circuit is used to change the destination of outputs of one sensor array to the AF IC, whereby range finding is carried out in an active AF mode. According to the present invention, a compact and inexpensive camera having the ability to carry out range finding in two modes and capable of properly measuring a distance to any of objects lying in a wide area can be realized.
Abstract:
A distance-measuring device of this invention is characterized in that the distance measured by the PSDs is corrected on the basis of the direction and the amount of a spot light deviation obtained by a combination of three light-receiving elements that receives an asymmetrical spot, in order to prevent erroneous distance measuring due to spot light deviations in an infrared projection trigonometrical measurement system. With the present invention, the IRED projects a spot with protruding portions symmetrical and perpendicular to the base length, onto the subject. Then, the SPD of a first light-receiving section of a light-receiving element located the base length away from the IRED receives the protruding portions of the spot, and the SPD of a second light-receiving section receives the protruding portions. This allows the incident position of the reflected light from the object to be sensed. Based on the output of the SPDs of the light-receiving element, the AFIC computes the distance to the object.
Abstract:
A distance measurement apparatus for use in a camera having a CPU. The apparatus has no analog distance-measuring IC and can yet perform active distance measuring. It comprises an infrared-emitting diode (IRED), a light-receiving element and an integration circuit, both connected to the ports of the CPU. In operation, the IRED emits an infrared beam toward an object. The light-receiving element receives the beam reflected form the object and stationary light and converts the beam and the light into an electric signal. The integration circuit integrates the electric signal. The CPU measures a first period of time lapsing from the time when the the integration circuit is initialized to the time when the output of the integration circuit increases over a predetermined value. The CPU also measures a second period of time lapsing from the time when the the integration circuit is initialized to the time when the output of the integration circuit increases over the predetermined value while the IRED is emitting no infrared beam. From the first and second periods of time, thus measured, the CPU determines the distance at which the object is located, not influenced by from the stationary light at all.
Abstract:
In a camera distance measuring apparatus a light projector projects light along a plurality of axes, a first distance detector receiving light of one axis reflected light from an object detecting the distance of an object in the center of the picture, a second distance detector receiving light of another axis reflected from the object and detecting the distance to the object on the periphery of the picture, a moving speed detector receiving light of one axis reflected from the object and detecting the speed of the object in the optical axial direction, a judging device judging whether object distance in the central part of the picture is farther than a predetermined value, an object distance detector operating the second distance detector when the distance to the object in the picture central part is greater than the predetermined value and determining the distance to the object based on the measurements of the first and second distance detectors, an object distance presuming control operating the moving speed detector when the distance to the object in the picture central part is less than the predetermined value and presuming the object distance after a predetermined time based on the detected speed the measured distance and a predetermined time interval and a focusing control adjusting the photographing lens according to object distance determined by the object distance determining means on the basis of the judged result of the judging means or the distance to the object presumed by the object distance presuming means.