Face recognition using larger pose face frontalization

    公开(公告)号:US10474880B2

    公开(公告)日:2019-11-12

    申请号:US15888629

    申请日:2018-02-05

    Abstract: A face recognition system is provided. The system includes a device configured to capture an input image of a subject. The system further includes a processor. The processor estimates, using a 3D Morphable Model (3DMM) conditioned Generative Adversarial Network, 3DMM coefficients for the subject of the input image. The subject varies from an ideal front pose. The processor produces, using an image generator, a synthetic frontal face image of the subject of the input image based on the input image and the 3DMM coefficients. An area spanning the frontal face of the subject is made larger in the synthetic image than in the input image. The processor provides, using a discriminator, a decision indicative of whether the subject of the synthetic image is an actual person. The processor provides, using a face recognition engine, an identity of the subject in the input image based on the synthetic and input images.

    Camera system for traffic enforcement

    公开(公告)号:US10289823B2

    公开(公告)日:2019-05-14

    申请号:US15637368

    申请日:2017-06-29

    Abstract: A traffic enforcement system and corresponding method are provided. The traffic enforcement system includes a camera configured to capture an input image of one or more subjects in a motor vehicle. The traffic enforcement system further includes a memory storing a deep learning model configured to perform multi-task learning for a pair of tasks including a liveness detection task and a face recognition task on one or more subjects in a motor vehicle depicted in the input image. The traffic enforcement system also includes a processor configured to apply the deep learning model to the input image to recognize an identity the one or more subjects in the motor vehicle and a liveness of the one or more subjects. The liveness detection task is configured to evaluate a plurality of different distractor modalities corresponding to different physical spoofing materials to prevent face spoofing for the face recognition task.

    LONG-TAIL LARGE SCALE FACE RECOGNITION BY NON-LINEAR FEATURE LEVEL DOMAIN ADAPTION

    公开(公告)号:US20190095704A1

    公开(公告)日:2019-03-28

    申请号:US16145257

    申请日:2018-09-28

    Abstract: A computer-implemented method, system, and computer program product are provided for facial recognition. The method includes receiving, by a processor device, a plurality of images. The method also includes extracting, by the processor device with a feature extractor utilizing a convolutional neural network (CNN) with an enlarged intra-class variance of long-tail classes, feature vectors for each of the plurality of images. The method additionally includes generating, by the processor device with a feature generator, discriminative feature vectors for each of the feature vectors. The method further includes classifying, by the processor device utilizing a fully connected classifier, an identity from the discriminative feature vector. The method also includes control an operation of a processor-based machine to react in accordance with the identity.

    GENERATING OCCLUSION-AWARE BIRD EYE VIEW REPRESENTATIONS OF COMPLEX ROAD SCENES

    公开(公告)号:US20190094875A1

    公开(公告)日:2019-03-28

    申请号:US16146202

    申请日:2018-09-28

    Abstract: Systems and methods for generating an occlusion-aware bird's eye view map of a road scene include identifying foreground objects and background objects in an input image to extract foreground features and background features corresponding to the foreground objects and the background objects, respectively. The foreground objects are masked from the input image with a mask. Occluded objects and depths of the occluded objects are inferred by predicting semantic features and depths in masked areas of the masked image according to contextual information related to the background features visible in the masked image. The foreground objects and the background objects are mapped to a three-dimensional space according to locations of each of the foreground objects, the background objects and occluded objects using the inferred depths. A bird's eye view is generated from the three-dimensional space and displayed with a display device.

    VIEWPOINT INVARIANT OBJECT RECOGNITION BY SYNTHESIZATION AND DOMAIN ADAPTATION

    公开(公告)号:US20190066493A1

    公开(公告)日:2019-02-28

    申请号:US16051924

    申请日:2018-08-01

    Abstract: Systems and methods for performing domain adaptation include collecting a labeled source image having a view of an object. Viewpoints of the object in the source image are synthesized to generate view augmented source images. Photometrics of each of the viewpoints of the object are adjusted to generate lighting and view augmented source images. Features are extracted from each of the lighting and view augmented source images with a first feature extractor and from captured images captured by an image capture device with a second feature extractor. The extracted features are classified using domain adaptation with domain adversarial learning between extracted features of the captured images and extracted features of the lighting and view augmented source images. Labeled target images are displayed corresponding to each of the captured images including labels corresponding to classifications of the extracted features of the captured images.

Patent Agency Ranking