-
公开(公告)号:US11600113B2
公开(公告)日:2023-03-07
申请号:US17091066
申请日:2020-11-06
Applicant: NEC Laboratories America, Inc.
Inventor: Xiang Yu , Manmohan Chandraker , Kihyuk Sohn , Aruni RoyChowdhury
Abstract: A computer-implemented method for implementing face recognition includes obtaining a face recognition model trained on labeled face data, separating, using a mixture of probability distributions, a plurality of unlabeled faces corresponding to unlabeled face data into a set of one or more overlapping unlabeled faces that include overlapping identities to those in the labeled face data and a set of one or more disjoint unlabeled faces that include disjoint identities to those in the labeled face data, clustering the one or more disjoint unlabeled faces using a graph convolutional network to generate one or more cluster assignments, generating a clustering uncertainty associated with the one or more cluster assignments, and retraining the face recognition model on the labeled face data and the unlabeled face data to improve face recognition performance by incorporating the clustering uncertainty.
-
公开(公告)号:US11580780B2
公开(公告)日:2023-02-14
申请号:US17091011
申请日:2020-11-06
Applicant: NEC Laboratories America, Inc.
Inventor: Xiang Yu , Manmohan Chandraker , Kihyuk Sohn , Yichun Shi
Abstract: A computer-implemented method for implementing face recognition includes receiving training data including a plurality of augmented images each corresponding to a respective one of a plurality of input images augmented by one of a plurality of variations, splitting a feature embedding generated from the training data into a plurality of sub-embeddings each associated with one of the plurality of variations, associating each of the plurality of sub-embeddings with respective ones of a plurality of confidence values, and applying a plurality of losses including a confidence-aware identification loss and a variation-decorrelation loss to the plurality of sub-embeddings and the plurality of confidence values to improve face recognition performance by learning the plurality of sub-embeddings.
-
公开(公告)号:US11087142B2
公开(公告)日:2021-08-10
申请号:US16567236
申请日:2019-09-11
Applicant: NEC Laboratories America, Inc.
Inventor: Yi-Hsuan Tsai , Manmohan Chandraker , Shuyang Dai , Kihyuk Sohn
Abstract: Systems and methods for recognizing fine-grained objects are provided. The system divides unlabeled training data from a target domain into two or more target subdomains using an attribute annotation. The system ranks the target subdomains based on a similarity to the source domain. The system applies multiple domain discriminators between each of the target subdomains and a mixture of the source domain and preceding target domains. The system recognizes, using the multiple domain discriminators for the target domain, fine-grained objects.
-
公开(公告)号:US20210110210A1
公开(公告)日:2021-04-15
申请号:US17128535
申请日:2020-12-21
Applicant: NEC Laboratories America, Inc.
Inventor: Yi-Hsuan Tsai , Kihyuk Sohn , Buyu Liu , Manmohan Chandraker , Jong-Chyi Su
IPC: G06K9/62 , G06K9/00 , G06K9/32 , B60W30/095 , B60W30/09 , B60W10/20 , B60W10/18 , B60W50/00 , G08G1/16 , G06N3/08
Abstract: Systems and methods for lane marking and road sign recognition are provided. The system aligns image level features between a source domain and a target domain based on an adversarial learning process while training a domain discriminator. The target domain includes one or more road scenes having lane markings and road signs. The system selects, using the domain discriminator, unlabeled samples from the target domain that are far away from existing annotated samples from the target domain. The system selects, based on a prediction score of each of the unlabeled samples, samples with lower prediction scores. The system annotates the samples with the lower prediction scores.
-
公开(公告)号:US10474883B2
公开(公告)日:2019-11-12
申请号:US15803292
申请日:2017-11-03
Applicant: NEC Laboratories America, Inc.
Inventor: Xiang Yu , Kihyuk Sohn , Manmohan Chandraker , Xi Peng
IPC: G06K9/00 , G06N3/04 , G06N3/08 , G08B13/196 , G06K9/62
Abstract: A computer-implemented method, system, and computer program product is provided for pose-invariant facial recognition. The method includes generating, by a processor using a recognition neural network, a rich feature embedding for identity information and non-identity information for each of one or more images. The method also includes generating, by the processor using a Siamese reconstruction network, one or more pose-invariant features by employing the rich feature embedding for identity information and non-identity information. The method additionally includes identifying, by the processor, a user by employing the one or more pose-invariant features. The method further includes controlling an operation of a processor-based machine to change a state of the processor-based machine, responsive to the identified user in the one or more images.
-
公开(公告)号:US10402701B2
公开(公告)日:2019-09-03
申请号:US15889913
申请日:2018-02-06
Applicant: NEC Laboratories America, Inc.
Inventor: Kihyuk Sohn , Xiang Yu , Manmohan Chandraker
IPC: G06K9/00 , G06K9/66 , G06N3/08 , G06N20/00 , G06K9/62 , G06T7/70 , G06T9/00 , G06K9/46 , G06N3/02 , G08B13/196 , G06N3/04
Abstract: A face recognition system is provided that includes a device configured to capture a video sequence formed from a set of unlabeled testing video frames. The system includes a processor configured to pre-train a face recognition engine formed from reference CNNs on a still image domain that includes labeled training still image frames of faces. The processor adapts the face recognition engine to a video domain to form an adapted engine, by applying non-reference CNNs to domains including the still image and video domains and a degraded image domain. The degraded image domain includes labeled synthetically degraded versions of the frames included in the still image domain. The video domain includes random unlabeled training video frames. The processor recognizes, using the adapted engine, identities of persons corresponding to at least one face in the video sequence to obtain a set of identities. A display device displays the set of identities.
-
公开(公告)号:US20190095699A1
公开(公告)日:2019-03-28
申请号:US16145578
申请日:2018-09-28
Applicant: NEC Laboratories America, Inc.
Inventor: Xiang Yu , Xi Yin , Kihyuk Sohn , Manmohan Chandraker
Abstract: A computer-implemented method, system, and computer program product are provided for facial recognition. The method includes receiving, by a processor device, a plurality of images. The method also includes extracting, by the processor device with a feature extractor utilizing a convolutional neural network (CNN) with an enlarged intra-class variance of long-tail classes, feature vectors for each of the plurality of images. The method additionally includes generating, by the processor device with a feature generator, discriminative feature vectors for each of the feature vectors. The method further includes classifying, by the processor device utilizing a fully connected classifier, an identity from the discriminative feature vector. The method also includes control an operation of a processor-based machine to react in accordance with the identity.
-
公开(公告)号:US20180268201A1
公开(公告)日:2018-09-20
申请号:US15888629
申请日:2018-02-05
Applicant: NEC Laboratories America, Inc.
Inventor: Xiang Yu , Kihyuk Sohn , Manmohan Chandraker
CPC classification number: G06K9/00288 , G06F16/71 , G06F16/743 , G06F16/784 , G06K9/00201 , G06K9/00208 , G06K9/00214 , G06K9/00255 , G06K9/00275 , G06K9/00771 , G06K9/00899 , G06K9/4628 , G06K9/6256 , G06T19/20 , G06T2210/44
Abstract: A face recognition system is provided. The system includes a device configured to capture an input image of a subject. The system further includes a processor. The processor estimates, using a 3D Morphable Model (3DMM) conditioned Generative Adversarial Network, 3DMM coefficients for the subject of the input image. The subject varies from an ideal front pose. The processor produces, using an image generator, a synthetic frontal face image of the subject of the input image based on the input image and the 3DMM coefficients. An area spanning the frontal face of the subject is made larger in the synthetic image than in the input image. The processor provides, using a discriminator, a decision indicative of whether the subject of the synthetic image is an actual person. The processor provides, using a face recognition engine, an identity of the subject in the input image based on the synthetic and input images.
-
公开(公告)号:US11604945B2
公开(公告)日:2023-03-14
申请号:US17128535
申请日:2020-12-21
Applicant: NEC Laboratories America, Inc.
Inventor: Yi-Hsuan Tsai , Kihyuk Sohn , Buyu Liu , Manmohan Chandraker , Jong-Chyi Su
IPC: G06K9/00 , G06K9/62 , B60W30/095 , B60W30/09 , B60W10/20 , B60W10/18 , B60W50/00 , G08G1/16 , G06N3/08 , G06V10/25 , G06V20/58 , G06V20/56
Abstract: Systems and methods for lane marking and road sign recognition are provided. The system aligns image level features between a source domain and a target domain based on an adversarial learning process while training a domain discriminator. The target domain includes one or more road scenes having lane markings and road signs. The system selects, using the domain discriminator, unlabeled samples from the target domain that are far away from existing annotated samples from the target domain. The system selects, based on a prediction score of each of the unlabeled samples, samples with lower prediction scores. The system annotates the samples with the lower prediction scores.
-
公开(公告)号:US11604943B2
公开(公告)日:2023-03-14
申请号:US16400376
申请日:2019-05-01
Applicant: NEC Laboratories America, Inc.
Inventor: Yi-Hsuan Tsai , Samuel Schulter , Kihyuk Sohn , Manmohan Chandraker
Abstract: Systems and methods for domain adaptation for structured output via disentangled representations are provided. The system receives a ground truth of a source domain. The ground truth is used in a task loss function for a first convolutional neural network that predicts at least one output based on inputs from the source domain and a target domain. The system clusters the ground truth of the source domain into a predetermined number of clusters, and predicts, via a second convolutional neural network, a structure of label patches. The structure includes an assignment of each of the at least one output of the first convolutional neural network to the predetermined number of clusters. A cluster loss is computed for the predicted structure of label patches, and an adversarial loss function is applied to the predicted structure of label patches to align the source domain and the target domain on a structural level.
-
-
-
-
-
-
-
-
-