摘要:
Image data, such as from a mobile phone camera, is analyzed to determine a colorfulness metric (e.g., saturation) or a contrast metric (e.g., Weber contrast). This metric is then used in deciding which of, or in which order, plural different image recognition processes should be invoked in order to present responsive information to a user. A great number of other features and arrangements are also detailed.
摘要:
The present technology concerns cell phones and other portable devices, and more particularly concerns use of such devices in connection with media content (electronic and physical) and with other systems (e.g., televisions, digital video recorders, and electronic program directories). Some aspects of the technology allow users to easily transfer displayed content from cell phone screens onto a television screens for easier viewing, or vice versa for content portability. Others enable users to participate interactively in entertainment content, such as by submitting plot directions, audio input, character names, etc., yielding more engaging, immersive, user experiences. Still other aspects of the technology involve a program directory database, compiled automatically from information reported by network nodes that watch and identify content traffic passing into (and/or out of) networked computers. By identifying content resident at a number of different repositories (e.g., web sites, TV networks, P2P systems, etc.), such a directory allows cell phone users to identify the diversity of sources from which desired content can be obtained—some available on a scheduled basis, others available on demand. Depending on the application, the directory information may be transparent to the user—serving to identify sources for desired content, from which application software can pick for content downloading, based, e.g., on context and stored profile data. A great number of other features and arrangements are also detailed.
摘要:
Digital watermark encoding—and associated registry transactions—are made transparent to consumers—performed as built-in features of common image processing operations, such as taking a picture, or printing a picture. In one arrangement, a user interacts with buttons and other controls of a graphical user interface on the touchscreen of a printer to author specific experiences that should be triggered by a hardcopy image—such as launching a related video, playing a recorded audio clip, displaying other images in a story narrative to which the hardcopy image relates, etc. The printer then attends to interactions with network infrastructure components needed to give the hardcopy print the user-desired functionality. In another arrangement, the content experience triggered by a printed image is authored automatically, e.g., by reference to data mined from the image's online context (e.g., Facebook photo album). A great variety of other features and arrangements are also detailed.
摘要:
Arrangements involving portable devices (e.g., smartphones and tablet computers) are disclosed. One arrangement enables a content creator to select software with which that creator's content should be rendered—assuring continuity between artistic intention and delivery. Another utilizes a device camera to identify nearby subjects, and take actions based thereon. Others rely on near field chip (RFID) identification of objects, or on identification of audio streams (e.g., music, voice). Some technologies concern improvements to the user interfaces associated with such devices. Others involve use of these devices in connection with shopping, text entry, sign language interpretation, and vision-based discovery. Still other improvements are architectural in nature, e.g., relating to evidence-based state machines, and blackboard systems. Yet other technologies concern use of linked data in portable devices—some of which exploit GPU capabilities. Still other technologies concern computational photography. A great variety of other features and arrangements are also detailed.
摘要:
Methods and arrangements involving portable devices, such as smartphones and tablet computers, are disclosed. In a particular embodiment, a system stores information from a sensor sub-system as RDF triples. The sensor sub-system may comprise a physical or logical sensor, such as a camera, a microphone, an accelerometer, a GPS receiver, an image classifier, and a user activity sensor. The triples can be stored in a user's smartphone or other portable device, or in the cloud. The stored data can then be acted on by a processor—again, in the user's smartphone, in another portable device, or in the cloud. A great variety of other features and arrangements are also detailed.
摘要:
Methods and arrangements involving portable devices, such as smartphones and tablet computers, are disclosed. One arrangement enables a creator of content to select software with which that creator's content should be rendered—assuring continuity between artistic intention and delivery. Another arrangement utilizes the camera of a smartphone to identify nearby subjects, and take actions based thereon. Others rely on near field chip (RFID) identification of objects, or on identification of audio streams (e.g., music, voice). Some of the detailed technologies concern improvements to the user interfaces associated with such devices. Others involve use of these devices in connection with shopping, text entry, sign language interpretation, and vision-based discovery. Still other improvements are architectural in nature, e.g., relating to evidence-based state machines, and blackboard systems. Yet other technologies concern use of linked data in portable devices—some of which exploit GPU capabilities. Still other technologies concern computational photography. A great variety of other features and arrangements are also detailed.
摘要:
The present technology concerns cell phones and other portable devices, and more particularly concerns use of such devices in connection with media content (electronic and physical) and with other systems (e.g., televisions, digital video recorders, and electronic program directories). Some aspects of the technology allow users to easily transfer displayed content from cell phone screens onto a television screens for easier viewing, or vice versa for content portability. Others enable users to participate interactively in entertainment content, such as by submitting plot directions, audio input, character names, etc., yielding more engaging, immersive, user experiences. Still other aspects of the technology involve a program directory database, compiled automatically from information reported by network nodes that watch and identify content traffic passing into (and/or out of) networked computers. By identifying content resident at a number of different repositories (e.g., web sites, TV networks, P2P systems, etc.), such a directory allows cell phone users to identify the diversity of sources from which desired content can be obtained—some available on a scheduled basis, others available on demand. Depending on the application, the directory information may be transparent to the user—serving to identify sources for desired content, from which application software can pick for content downloading, based, e.g., on context and stored profile data. A great number of other features and arrangements are also detailed.
摘要:
The present technology concerns cell phones and other portable devices, and more particularly concerns use of such devices in connection with media content (electronic and physical) and with other systems (e.g., televisions, digital video recorders, and electronic program directories). Some aspects of the technology allow users to easily transfer displayed content from cell phone screens onto a television screens for easier viewing, or vice versa for content portability. Others enable users to participate interactively in entertainment content, such as by submitting plot directions, audio input, character names, etc., yielding more engaging, immersive, user experiences. Still other aspects of the technology involve a program directory database, compiled automatically from information reported by network nodes that watch and identify content traffic passing into (and/or out of) networked computers. By identifying content resident at a number of different repositories (e.g., web sites, TV networks, P2P systems, etc.), such a directory allows cell phone users to identify the diversity of sources from which desired content can be obtained—some available on a scheduled basis, others available on demand. Depending on the application, the directory information may be transparent to the user—serving to identify sources for desired content, from which application software can pick for content downloading, based, e.g., on context and stored profile data. A great number of other features and arrangements are also detailed.
摘要:
An image is processed to encode a digital watermark, with different regions thereof processed using different levels of watermark intensity. In an image comprised of elements of differing sizes (e.g., halftone shapes of different sizes, or lines of different width), the different regions can be defined by reference to the sizes of elements contained therein. Regions characterized by relatively small elements can be watermarked at a relatively low intensity. Regions characterized by relatively large elements can be watermarked at a relatively high intensity. A variety of other features are also discussed.
摘要:
The picture information of video can be used in various ways to identify the video or its topical subject matter. This enables numerous novel arrangements in which particular video of interest to a particular consumer can be discerned. A variety of other embodiments and features are also detailed.