Abstract:
A substrate bonding apparatus for a liquid crystal display device includes a vacuum processing chamber, a lower stage provided in an interior of the vacuum chamber, an upper stage provided in the interior of the vacuum chamber and having at least one first through hole, a stage moving system having a stage moving axis connected to one of the lower and upper stages, and a driving motor, and at least one first alignment system having one end provided in the interior of the vacuum chamber for aligning a first substrate and a second substrate.
Abstract:
A touch panel apparatus includes a touch panel for recognizing a contact position and a touch panel controller for computing a coordinate value corresponding to the contact position on the touch panel, wherein an activation force is set to a value between 80 g˜150 g, and the touch panel controller compensates for an error of the coordinate value due to double touching of the touch panel.
Abstract:
A dual panel-type active matrix organic electroluminescent device includes a gate line disposed along a first direction on a first substrate, a data line disposed along a second direction on the first substrate, a power line disposed along the second direction on the first substrate and spaced apart from the data line to define a pixel region with the gate and data lines, the power line and the gate line both formed of a same material during a same process, a switching thin film transistor disposed on the first substrate near a crossing of the gate and data lines, a driving thin film transistor disposed on the first substrate near a crossing of the gate and power lines, a connecting pattern within the pixel region on the first substrate formed of an insulating material, and a connecting electrode disposed within the pixel region on the first substrate to cover the connecting pattern and electrically interconnecting the driving thin film transistor to an organic electroluminescent diode.
Abstract:
A backlight unit having external electrodes with increased lengths includes at least one fluorescent lamp and at least one supporter assembly for supporting the at least one fluorescent lamp. The at least one supporter assembly includes more than one inclined side surface and at least one cavity within one of the inclined surfaces, wherein each cavity receives an end of the at least one fluorescent lamp.
Abstract:
A liquid crystal panel comprising a first substrate and a second substrate, wherein the first substrate protrudes at one side relative to the second substrate and the second substrate protrudes at an opposite side relative to the first substrate.
Abstract:
An organic electroluminescent device includes first and second substrates facing and spaced apart from each other, the first and second substrates including a pixel region; a gate line on an inner surface of the first substrate; a data line crossing the gate line; a switching thin film transistor connected with the gate line and the data line; a driving thin film transistor connected with the switching thin film transistor; a power line connected with the driving thin film transistor; a first electrode on an inner surface of the second substrate; a first sidewall and a second sidewall on the first electrode at a boundary of the pixel region, the first sidewall and the second sidewall spaced apart from each other; an electroluminescent layer on the first electrode in the pixel region; a second electrode on the electroluminescent layer in the pixel region; and a connection electrode electrically connected to the first and second substrates.
Abstract:
A cassette for a liquid crystal display (LCD) device, comprises: a body for receiving a substrate on which a plurality of LC panels divided from one another by a dummy region are formed; a plurality of supporting bars rotatably installed in the body and having a predetermined shape, for supporting a substrate; and a plurality of pads formed on each surface of the supporting bar with a different gap therebetween and contacting the dummy region of the substrate. When LCD devices of various sizes are received in the cassette, supporting bars for supporting each of the LCD devices are prevented from contacting an image display region of the LCD device and thus an inferiority of the LCD device is prevented.
Abstract:
An aligning apparatus includes a loading plate to load at least one alignment object; first and second alignment bars to align the at least one alignment object loaded on the loading plate, wherein the first and second alignment bars are bent by a force greater than a threshold value when contacting the alignment object; and at least one driving unit to drive the first and second alignment bars in close and open directions toward and away from each other.
Abstract:
An apparatus for manufacturing capable of reducing footprint and a working time for loading substrates as short as possible, and a method using the same are disclosed. The apparatus includes a cassette to accommodate a plurality of substrates, a stocker in which the cassette is loaded, a process progressing unit to receive the respective substrates in the cassette and to perform a process, a loader having at least two hands and disposed between the stocker and the process progressing unit to receive and supply the respective substrates accommodated in the cassette on the stocker to the process progressing unit, and at least one withdrawing unit to withdraw and supply the respective substrates from the cassette to at least one of the hands in the loader.
Abstract:
A method for cutting a liquid crystal display panel includes transferring a pair of mother substrates on which a plurality of panel regions have been disposed to a scribing unit; forming first and second prearranged cut lines on front and rear surfaces of the mother substrates using a scribing unit; transferring the mother substrates with the first and second prearranged cut lines formed thereon to a breaking component; and moving a transfer unit which includes a body having a plurality of suction members and a steam generator installed at an edge of the body to an upper side of the mother substrates, and separating liquid crystal display panels formed at the panel regions from a dummy glass therearound while spraying steam onto the surface of the mother substrates through the steam generator of the transfer unit.