Abstract:
This invention discloses an electron source manufacturing method including the step of applying a voltage to a plurality of conductive members by applying a potential to first portions of the plurality of conductive members serving as at least part of electron-emitting devices via a wiring commonly connected to the plurality of conductive members, and applying a potential to second portions of the plurality of conductive members, wherein the potential applied to the second portions of the plurality of conductive members is set to relax the difference in voltage applied to the plurality of conductive members owing to the difference between potentials at portions respectively connected to the first portions of the plurality of conductive members in the wiring commonly connected to the plurality of conductive members.
Abstract:
A method of producing an electron-emitting device includes the steps of forming a pair of electrodes and an electrically-conductive thin film on a substrate in such a manner that the pair of electrodes are in contact with the electrically-conductive thin film and forming an electron emission region using the electrically-conductive thin film, wherein that a solution containing a metal element is supplied in a droplet form onto the substrate thereby forming the electrically-conductive thin film.
Abstract:
An image-forming apparatus of the present invention includes: a vacuum container constituted by disposing in opposition to each other a rear plate with an electron source formed thereon, and a face plate having an image display region provided with at least phosphors for being irradiated with electrons emitted from the electron source to form an image and anodes disposed on the phosphors; anode potential supplying means for supplying an electric potential higher than that of the electron source to the anode; at least one electroconductive member provided at a site outside of the image display region on an inner surface of the face plate; potential supplying means for supplying to the electroconductive member an electric potential at a level between a lowest electric potential of those which are applied to the electron source and an electric potential applied to the anode; first and second resistant members electrically connected between the anode and the electroconductive members, having resistances higher than that of the anode and having different resistances from each other, wherein the anode, the first resistant member, the second resistant member, and the electroconductive member are electrically connected in series.
Abstract:
In an electron emitting device, an electron source and an image forming apparatus making use of it, and producing methods of them, an organic film is present on a pair of conductive films forming the electron emitting device. This organic film is placed in an area on the conductive films. This prevents occurrence of leak paths between the conductive films, which used to occur because of change of the organic film on the substrate into a conductor where the organic film existed on the substrate outside the area of the conductive films, and prevents decrease in electron emission efficiency.
Abstract:
This invention relates to an electron source substrate free from any short-circuiting between upper and lower wires, and an image-forming apparatus in which discharge is suppressed. The electron source substrate includes a substrate, a Y-direction wire formed on the substrate by a printing method, an X-direction wire formed on the Y-direction wire by the printing method so as to intersect the Y-direction wire, an insulating layer for insulating the Y-direction wire and X-direction wire at the intersection part, and a plurality of electron-emitting devices connected to the X-direction wire and Y-direction wire, wherein at least one of the Y-direction wire and X-direction wire has a surface shape with a surface roughness Ra of 0.3 &mgr;m or less and a surface roughness Rz of 3 &mgr;m or less.
Abstract:
A method of producing an electron-emitting device includes the steps of forming a pair of electrodes and an electrically-conductive thin film on a substrate in such a manner that the pair of electrodes are in contact with the electrically-conductive thin film and forming an electron emission region using the electrically-conductive thin film, wherein the method is characterized in that a solution containing a metal element is supplied in a droplet form onto the substrate thereby forming the electrically-conductive thin film.
Abstract:
An image displaying apparatus capable of suppressing abnormal discharges includes the following components. That is, the image displaying apparatus includes a rear plate 1005 provided with electron beam sources; a face plate 1007 having an anode 1014 that includes an imaging area equipped with phosphor membrane 1008 emitting light by the irradiation of an electron beam and is regulated at an electric potential higher than those of the electron beam sources, and a potential regulating electrode 1015 that is situated at the outside of the anode 1014 for regulating the outside at a predetermined electric potential lower than that of the anode 1014; and spacers 1012 provided between the rear plate 1005 and the face plate 1007, wherein the image displaying apparatus has a structure such that the spacers 1012 contact both of the anode 1014 and the potential regulating electrode 1015 and electrodes are formed at the contacting portions.
Abstract:
A method of producing an electron-emitting device including the steps of forming a pair of electrodes and an electrically-conductive thin film on a substrate in such a manner that the pair of electrodes are in contact with the electrically-conductive thin film and forming an electron emission region using the electrically-conductive thin film, wherein a solution containing a metal element is supplied in a droplet form onto the substrate thereby forming the electrically-conductive thin film.
Abstract:
An image-forming apparatus comprises a rear plate on which an electron-emitting device is provided, a face plate having an image-forming member and arranged to be opposed to the rear plate, and a spacer provided between the face plate and the rear plate. The spacer comprises a spacer base plate and a coating layer including organic resin and carbon. At least part of the carbon is exposed from the surface of the coating layer. The image-forming apparatus displays an image with a high luminance and a high color saturation over a prolonged time.
Abstract:
In an electron beam apparatus including an enclosure in which an electron-emitting device having an electron-emitting region between opposite electrodes is disposed, the electron-emitting device exhibits such a characteristic as that an emission current is uniquely determined with respect to a device voltage. The interior of the enclosure is maintained under an atmosphere effective to prevent structural changes of the electron-emitting device. An image-forming apparatus includes an enclosure in which an electron source and an image-forming member are disposed, the electron source having the above electron-emitting device. An emission current is stable with a very small change in the amount of electrons emitted, a sharp image is produced with high contrast, and gradation control is easily carried out.