Abstract:
A data driver in a flat panel display comprises: a latch for receiving a data signal in series, and for outputting the data signal in parallel; and a digital-to-analog (D/A) converter for converting the digital signal outputted by the latch into an analog signal. The D/A converter receives a reference signal having a voltage level which varies with time and outputs an output signal corresponding to a voltage level of the reference signal at a point in time when the reference signal has a voltage level the same as that of the digital signal. Thus, gradation of a data signal is represented on the basis of a reference signal, and therefore the gradation of the data signal is compensated by converting the reference signal, thereby compensating the gradation of the data signal without using an additional device. The latter functions correspond to the steps of a data converting method.
Abstract:
An apparatus and method for detecting a pilot signal in a mobile communication system are provided by which the processing time taken to demodulate a traffic channel based on a channel estimation result can be reduced, and thus, the size of a buffer for buffering signals until the presence of a secondary/auxiliary pilot signal is detected can also be reduced. The apparatus includes a first channel estimator for estimating a channel for a noise component of a pilot symbol received by a first receiver, a second channel estimator for adding a pilot symbol received by a second receiver and the pilot symbol received by the first receiver and estimating a channel for a noise component of the added pilot symbol, an energy detector for detecting an energy value of a pilot symbol using result values output from the first and second channel estimators, and a comparison and determination unit for determining whether or not there is a secondary/auxiliary pilot signal by using the detected energy values.
Abstract:
An Electron Emission Display (EED) with decreased signal distortion has a data driver to convert data driving signals into display data signals having predetermined data voltage levels and to output the display data signals to data electrode lines. A method of driving the EED includes supplying an auxiliary voltage to the data electrode lines during blanking periods according to subsequent data and supplying the display data signals during active periods between the blanking periods.
Abstract:
The invention provides a dye-sensitized solar cell with an improved electrode structure and enhanced energy efficiency, and a method of manufacturing same. The dye-sensitized solar cell includes a light-transmission first electrode with a first surface, and a second electrode with a second surface facing the first surface of the first electrode. The second surface of the second electrode has convexo-concave portions. A porous layer is formed on the first surface of the first electrode. A dye is absorbed into the porous layer. An electrolyte is impregnated between the first and the second electrodes.
Abstract:
A dye-sensitized solar cell with an enlarged effective wavelength range for light energy absorption and enhanced photoelectric conversion efficiency, and a method of fabricating such a solar cell are disclosed. The dye-sensitized solar cell comprises a first electrode comprising a light transmission material, and a second electrode facing the first electrode. A porous layer is formed on the first electrode, and a composite dye is absorbed to the porous layer. The composite dye comprises two or more dye materials. An electrolyte is impregnated between the first and second electrodes.
Abstract:
Provided a transparent conductive layer and an image display device employing the transparent conductive layer. The transparent conductive layer includes a conductive layer containing a metal oxide and a protective layer formed on the conductive layer. The protective layer contains a hydrolyzed and polycondensated product of silicon alkoxide and at least one of mercapto compound and its hydrolyzed and polycondensated product.