Abstract:
A system for providing low-latency compute capacity is provided. The system may be configured to route incoming code execution requests based on user indications to use specific containers running on a plurality of virtual machine instances. The system may be configured to process a code execution request, identify, based on the user indication that a specific container previously used to handle a request of similar type is to be used for handling the code execution request, and cause the code execution request to be handled using the specific container.
Abstract:
A system for providing automatic management of low latency computational capacity is provided. The system may be configured to maintain a plurality of virtual machine instances. The system may be further configured to identify a trend in incoming code execution requests to execute program code on a virtual compute system, determine, based on the identified trend, that the plurality of virtual machine instances should be adjusted, and adjust the plurality of virtual machine instances based on the identified trend.
Abstract:
Systems and methods are described for transforming a data set within a data source into a series of task calls to an on-demand code execution environment or other distributed code execution environment. Such environments utilize pre-initialized virtual machine instances to enable execution of user-specified code in a rapid manner, without delays typically caused by initialization of the virtual machine instances, and are often used to process data in near-real time, as it is created. However, limitations in computing resources may inhibit a user from utilizing an on-demand code execution environment to simultaneously process a large, existing data set. The present application provides a task generation system that can iteratively retrieve data items from an existing data set and generate corresponding task calls to the on-demand computing environment, while ensuring that at least one task call for each data item within the existing data set is made.
Abstract:
A service manages a plurality of virtual machine instances for low latency execution of user codes. The service can provide the capability to execute user code in response to events triggered on an auxiliary service to provide implicit and automatic rate matching and scaling between events being triggered on the auxiliary service and the corresponding execution of user code on various virtual machine instances. An auxiliary service may be configured as an event triggering service to detect events and generate event messages for execution of the user codes. The service can request, receive, or poll for event messages directly from the auxiliary service or via an intermediary message service. Event messages can be rapidly converted to requests to execute user code on the service. The time from processing the event message to initiating a request to begin code execution is less than a predetermined duration, for example, 100 ms.
Abstract:
A system for providing security mechanisms for secure execution of program code is described. The system may be configured to maintain a plurality of virtual machine instances. The system may be further configured to receive a request to execute a program code and allocate computing resources for executing the program code on one of the virtual machine instances. One mechanism involves executing program code according to a user-specified security policy. Another mechanism involves executing program code that may be configured to communicate or interface with an auxiliary service. Another mechanism involves splitting and executing program code in a plurality of portions, where some portions of the program code are executed in association with a first level of trust and some portions of the program code are executed with different levels of trust.
Abstract:
A service manages a plurality of virtual machine instances for low latency execution of user codes. The plurality of virtual machine instances can be configured based on a predetermined set of configurations. One or more containers may be created within the virtual machine instances. In response to a request to execute user code, the service identifies a pre-configured virtual machine instance suitable for executing the user code. The service can allocate the identified virtual machine instance to the user, create a new container within an instance already allocated to the user, or re-use a container already created for execution of the user code. When the user code has not been activated for a time-out period, the service can invalidate allocation of the virtual machine instance destroy the container. The time from receiving the request to beginning code execution is less than a predetermined duration, for example, 100 ms.
Abstract:
A service manages a plurality of virtual machine instances for low latency execution of user codes. The service can provide the capability to execute user code in response to events triggered on an auxiliary service to provide implicit and automatic rate matching and scaling between events being triggered on the auxiliary service and the corresponding execution of user code on various virtual machine instances. An auxiliary service may be configured as an event triggering service to detect events and generate event messages for execution of the user codes. The service can request, receive, or poll for event messages directly from the auxiliary service or via an intermediary message service. Event messages can be rapidly converted to requests to execute user code on the service. The time from processing the event message to initiating a request to begin code execution is less than a predetermined duration, for example, 100 ms.
Abstract:
A system for providing security mechanisms for secure execution of program code is described. The system may be configured to maintain a plurality of virtual machine instances. The system may be further configured to receive a request to execute a program code and allocate computing resources for executing the program code on one of the virtual machine instances. One mechanism involves executing program code according to a user-specified security policy. Another mechanism involves executing program code that may be configured to communicate or interface with an auxiliary service. Another mechanism involves splitting and executing program code in a plurality of portions, where some portions of the program code are executed in association with a first level of trust and some portions of the program code are executed with different levels of trust.
Abstract:
A system for providing automatic resource resizing is provided. The system may be configured to maintain a plurality of virtual machine instances. The system may be further configured to receive a request to execute a program code and allocate computing resources for executing the program code on one of the virtual machine instances. The amount of resources allocated for executing the program code may be specified by the request and adjusted as needed.
Abstract:
A service manages a plurality of virtual machine instances for low latency execution of user codes. The service can provide the capability to execute user code in response to events triggered on an auxillary service to provide implicit and automatic rate matching and scaling between events being triggered on the auxiliary service and the corresponding execution of user code on various virtual machine instances. An auxiliary service may be configured as an event triggering service to detect events and generate event messages for execution of the user codes. The service can request, receive, or poll for event messages directly from the auxiliary service or via an intermediary message service. Event messages can be rapidly converted to requests to execute user code on the service. The time from processing the event message to initiating a request to begin code execution is less than a predetermined duration, for example, 100 ms.