Abstract:
Detecting objects in an image includes: extracting core instance features from the image; calculating feature maps at multiscale resolutions from the core instance features; calculating detection boxes from the core instance features; calculating segmentation masks for each detection box of the detection boxes at the multiscale resolutions of the feature maps; merging the segmentation masks at the multiscale resolutions to generate an instance mask for each object detected in the image; refining the confidence scores of the merged segmentation masks by auxiliary networks calculating pixel level metrics; and outputting the instance masks as the detected objects.
Abstract:
An apparatus and a method. The apparatus includes a plurality of polarization processors, including n inputs and n outputs, where n is an integer, wherein the plurality of polarization processors is configured to polarize channels with different bit-channel reliability; and at least one permutation processor, including n inputs and n outputs, wherein each of the at least one permutation processor is connected between two of the plurality of polarization processors, and connects the n outputs of a first of the two of the plurality of polarizations processors to the n inputs of a second of the two of the plurality of polarization processors between which each of the at least one permutation processor is connected in a permutation pattern, wherein at least one permutation processor is configured to not further polarize a bit channel.
Abstract:
An apparatus and a method. The apparatus includes a plurality of polarization processors, including n inputs and n outputs, where n is an integer, wherein the plurality of polarization processors is configured to polarize channels with different bit-channel reliability; and at least one permutation processor, including n inputs and n outputs, wherein each of the at least one permutation processor is connected between two of the plurality of polarization processors, and connects the n outputs of a first of the two of the plurality of polarizations processors to the n inputs of a second of the two of the plurality of polarization processors between which each of the at least one permutation processor is connected in a permutation pattern, wherein at least one permutation processor is configured to not further polarize a bit channel.
Abstract:
Apparatuses and methods of manufacturing same, systems, and methods for performing network parameter quantization in deep neural networks are described. In one aspect, multi-dimensional vectors representing network parameters are constructed from a trained neural network model. The multi-dimensional vectors are quantized to obtain shared quantized vectors as cluster centers, which are fine-tuned. The fine-tuned and shared quantized vectors/cluster centers are then encoded. Decoding reverses the process.
Abstract:
A method, apparatus, and chipset are provided for constructing hybrid automatic repeat request (HARQ) rate-compatible polar codes for communication channels. The method includes constructing, in a terminal, a base polar code of length 2n; and determining a sequence of m
Abstract:
A computing system includes: an inter-device interface configured to communicate content; and a communication unit, coupled to the inter-device interface, configured to process the content based on a polar communication mechanism utilizing multiple processing dimensions for communicating the content, including: generating a node result with a first orthogonal mechanism, and processing the node result from the first orthogonal mechanism with a second orthogonal mechanism.
Abstract:
An apparatus and method of constructing a universal polar code is provided. The apparatus includes a first function block configured to polarize and degrade a class of channels Wj to determine a probability of error Pe,j of each bit-channel of Wj, wherein jε{1, 2, . . . , s}, in accordance with a bit-channel index i; a second function block configured to determine a probability of error Pe(i) for the universal polar code for each bit-channel index i; a third function block configured to sort the Pe(i); and a fourth function block configured to determine a largest number k of bit-channels such that a sum of corresponding k bit-channel error probabilities Pe(i) is less than or equal to a target frame error rate Pt for the universal polar code, wherein the indices corresponding to the k smallest Pe(i) are good bit-channels for the universal polar code.
Abstract:
A communication system includes: an antenna unit configured to receive a receiver signal; a communication unit, coupled to the antenna unit, configured to: calculate a decoding result based on the receiver signal, generate a dynamic scalar based on the decoding result, and generate a content replication based on the dynamic scalar for communicating with a device.
Abstract:
A communication system includes: an antenna for receiving a receiver signal for communicating a transmitter signal corresponding to the receiver signal over transmission channels according to a polar coding scheme; a communication unit including: an arrangement module for generating a sequenced-signal based on the receiver signal according to a permutation mechanism; and a decoder module for determining a communication content based on the sequenced-signal for communicating the communication content intended by the transmitter signal with a device.The communication system includes: a communication unit including an encoder module for determining a coded-message for representing a communication content according to a polar coding scheme, permutation module for generating a message-channel map for mapping the coded-message to transmission channels; and an antenna for transmitting a transmitter signal based on the coded-message according to the message-channel map for communicating the transmitter signal through the transmission channels with a device.
Abstract:
A computing system includes: an inter-device interface configured to access a destination signal including an information portion for representing a content and an error-handling portion for describing the information portion relative to the content; a communication unit, coupled to the inter-device interface, configured to: generate a parity-check parameter based on a sparse configuration from the destination signal, and estimate the content based on decoding the information portion using the error-handling portion and the parity-check parameter.