摘要:
A system for utilizing low energy includes a terminal, a heating circuit and a ground circuit, wherein heat bound to a medium circulating in the ground circuit is transferred with the terminal, such as a ground heat pump, to the heating circuit. The ground circuit is implemented with an inner pipe and outer pipe surrounding it in such a way that the outer end of the outer pipe is closed, wherein, depending on the flow direction, the medium can move at the end of the pipe from the inner pipe to the outer pipe and vice versa. Further, a pipe for utilizing low energy is provided.
摘要:
The present invention relates to a method for drilling a hole and installing a geothermal transfer apparatus. A sonic drilling apparatus is positioned at a desired location. The sonic drilling apparatus includes a rotating and vibrating apparatus for rotating and vibrating a hollow drill string into the ground, the hollow drill string having an inner space. The hole is drilled to a desired depth by rotating and vibrating the hollow drill string into the ground while discharging fluid into the inner space of the hollow drill string. A geothermal transfer apparatus is lowered into the inner space of the hollow drill string following the drilling of the hole to the desired depth. The drill string is then removed from the ground.
摘要:
A method of transferring heat energy between a heat exchanging subsystem installed above the surface of the Earth, and material beneath the surface of the Earth, by installing one or more coaxial-flow heat exchanging structures in the material beneath the surface of the Earth. Each coaxial-flow heat exchanging structure has inner and out flow channels along which aqueous-based heat transfer fluid is circulated. Turbulance is generated in the aqueous-based heat transfer fluid flowing along the outer flow channel, to increase the rate of heat energy transfer between the aqueous-based heat transfer fluid and material beneath the surface of the Earth along the length of the outer flow channel. This in turn increases the rate of heat energy transfer between the heat exchanging subsystem installed above the surface of the Earth and material beneath the surface of the Earth.
摘要:
A method of transferring heat energy between a heat exchanging subsystem installed above the surface of the Earth, and material beneath the surface of the Earth, by installing one or more coaxial-flow heat exchanging structures in the material beneath the surface of the Earth. Each coaxial-flow heat exchanging structure has inner and out flow channels along which aqueous-based heat transfer fluid is circulated. Turbulence is generated in the aqueous-based heat transfer fluid flowing along the outer flow channel, thereby improving the transfer of heat energy between the aqueous-based heat transfer fluid and material beneath the surface of the Earth along the length of the outer flow channel.
摘要:
A natural gas dehydration and condensate separation system facilitating the transfer of heat energy between a heat energy exchanging subsystem in said system and the Earth. One or more coaxial-flow heat exchanging structures are installed in the Earth, for facilitating the transfer of heat energy in a natural gas stream between (i) the heat energy exchanging subsystem and (ii) the Earth. Each said coaxial-flow heat exchanging structure includes an inner tube section having an outer wall surface extending between the proximal and distal ends, and a thermally conductive outer tube section, disposed coaxially around the inner tube section, and having an inner wall surface extending between the proximal and distal ends. An outer flow channel is provided between the outer wall surface of the inner tube section and the inner wall surface of the outer tube section. A turbulence generating structure is disposed along a portion of the length of the outer flow channel so as to introduce turbulence into the flow of the heat exchanging fluid flowing along the outer flow channel, thereby improving the transfer of heat energy between the heat exchanging fluid and the Earth along the length of the outer flow channel.
摘要:
A geothermal heat exchanging system including a heat exchanging subsystem installed above the surface of Earth, and one or more coaxial-flow heat exchanging structures installed in the Earth. The coaxial-flow heat exchanging structures installed in the Earth, facilitate the transfer of heat energy in the aqueous-based heat transfer fluid, between the aqueous-based heat transfer fluid and material beneath the surface of the Earth. Each coaxial-flow heat exchanging structure includes an inner tube section, a thermally conductive outer tube section, and outer flow channel between the inner tube section and the outer tube section. A turbulence generating structure is disposed along a portion of the length of the outer flow channel so as to introduce turbulence into the flow of the aqueous-based heat transfer fluid flowing along the outer flow channel, thereby improving the transfer of heat energy between the aqueous-based heat transfer fluid and the Earth along the length of the outer flow channel.
摘要:
A coaxial-flow heat transfer system for installation in a geological environment and facilitating the transfer of heat energy between an external heat energy producing system and the geological environment. In the coaxial-flow heat transfer system, aqueous-based heat transfer fluid is pumped through the external heat energy exchanging system so as to transfer heat between the aqueous-based heat transfer fluid and the external heat energy exchanging system. The coaxial-flow heat transfer system comprises a coaxial-flow heat transfer structure for installation within the geological environment and having a proximal end and a distal end for exchanging heat between a source of fluid at a first temperature and a geological environment at a second temperature. The coaxial-flow heat transfer structure comprises a thermally conductive outer tube section, and an inner tube section having an inner flow channel and being coaxially arranged within the outer tube section. An outer flow channel is formed between the inner and outer tube sections, and a helically-arranged fin structure is disposed along the outer flow channel, so as to form at least one helically-extending outer flow channel, for constantly rotating the aqueous-based heat transfer fluid flowing between the inner and outer flow channels, and thereby improving the transfer of heat energy between the aqueous-based heat transfer fluid and the geological environment along the length of the outer flow channel.
摘要:
A coaxial-flow heat exchanging structure having a proximal end and a distal end for exchanging heat between a source of fluid at a first temperature and the environment (e.g. air, ground, water, slurry etc.) at a second temperature. The coaxial-flow heat transfer structure comprises: a thermally conductive outer tube section, and an inner tube section having an inner flow channel and being coaxially arranged within the outer tube section. An outer flow channel is formed between the inner and outer tube sections, and helically-extending turbulence generator is provided along the outer flow channel, so as to create turbulence along the flow of heat exchanging fluid flowing between the inner and outer flow channels, and thereby increasing the heat transfer through the walls of the outer tube section to the ambient environment.
摘要:
An coaxial-flow heat exchanging structure having a proximal end and a distal end for exchanging heat between a source of fluid at a first temperature and the environment (e.g. air, ground, water, slurry etc.) at a second temperature. The coaxial-flow heat transfer structure comprises: a thermally conductive outer tube section, and an inner tube section having an inner flow channel and being coaxially arranged within the outer tube section. An outer flow channel is formed between the inner and outer tube sections, and helically-extending turbulence generator is provided along the outer flow channel, so as to create turbulence along the flow of heat exchanging fluid flowing between the inner and outer flow channels, and thereby increasing the heat transfer through the walls of the outer tube section to the ambient environment.
摘要:
An axial-flow heat exchanging structure having a proximal end and a distal end for exchanging heat between a source of fluid at a first temperature and the environment (e.g. ground, water, slurry) at a second temperature. The axial-flow heat exchanging structure comprises a thermally-conductive flowguide tube having a hollow conduit extending from said proximal end to said distal end. A spiral-finned tubing is disposed within the hollow conduit of said thermally-conductive flowguide tube, and has a central conduit for conducting a heat exchanging fluid, from said proximal end, along the central conduit towards the distal end, and returning back to the proximal end along a spiral annular flow channel formed between the thermally-conductive flowguide tube and the spiral-finned tubing.