Abstract:
A system includes an inlet line configured to receive a medium flowing from a low-pressure location of an engine to a chamber, a plurality of heat exchangers configured to receive the medium from the inlet line, and a valve located upstream from the plurality of heat exchangers. The valve is configured to divide in parallel the medium across at least a first heat exchanger and a second heat exchanger of the plurality of heat exchangers. A recirculation air system is configured to supply a recirculation
Abstract:
A system and method that comprises an air cycle machine, a flow of bleed air, at least one heat exchanger, and an inlet configured to supply the flow of the bleed air is provided. The bleed air directly flows from a source to either a compressor of the air cycle machine or the at least one heat exchanger in accordance with a high pressure, low pressure, or pressure boost operation mode. The system and method also can also utilize recirculated air flowing from the chamber to drive or maintain the air cycle machine in accordance with the above modes.
Abstract:
A system is provided. The system includes an inlet providing a first medium; an inlet providing a second medium; a compressing device including a compressor and a turbine; and at least one heat exchanger located downstream of the compressor. The compressing device is in communication with the inlet providing the first medium. The turbine is downstream of the compressor. An outlet of the at least one heat exchanger is in fluid communication with an inlet of the compressor and an inlet of the turbine.
Abstract:
A system, which includes a plurality of heat exchangers and a compressing device, prepares a medium bled from a low-pressure location of an engine and flowing through a plurality of heat exchangers into a chamber. The compressing device is in communication with the plurality of heat exchangers and regulates a pressure of the medium flowing through the plurality of heat exchangers. The compressing device includes a turbine that provides supplemental power to the compressing device based on a pressure of the medium in the chamber.
Abstract:
A heat exchanger for an aircraft includes a hot fluid inlet, a hot fluid outlet, a cold fluid inlet, a cold fluid outlet, and a header connected to the hot fluid outlet. The header includes a housing defining a header volume and a baffle separating the header volume into a first volume and a second volume, wherein the first volume and the second volume are in fluid communication with each other.
Abstract:
A method for providing recirculation air to an environmental control system is provided. The method includes supplying via an inlet a flow of bleed air to the environmental control system at a first energy, providing the bleed air from the environmental control system at a second energy into a chamber, and providing the recirculation air to the environmental control system by recirculating the bleed air at a third energy from the chamber to an air cycle machine.
Abstract:
An engine compressor bleed system of an engine for an aircraft is provided including a plurality of compressor pressure ports configured to supply bleed air to satisfy a cooling load for at least a first stage of a flight profile of an aircraft. A first pressure port of the plurality of compressor pressure ports is configured to provide bleed air having a pressure at least equal to a cabin pressure of an aircraft and a temperature that does not exceed a predetermined threshold.
Abstract:
A bleed system that comprises a bleed inter-compressor fluidly coupled to a low pressure port of the bleed system and configured to utilize a portion of a medium received from the low pressure port to increase the pressure of another portion of that medium. A turbine of the bleed inter-compressor is coupled to a compressor of the bleed inter-compressor and drives the compressor via a shaft, so as to regulate the pressure of the medium.
Abstract:
An environmental control system (ECS) pack is provided including a primary heat exchanger, a secondary heat exchanger, and an air cycle machine. The air cycle machine includes a compressor and a turbine. The compressor is fluidly coupled to an outlet of the primary heat exchanger and to an inlet of the secondary heat exchanger. The outlet of the secondary heat exchanger is fluidly coupled to the turbine. A first conduit connects the outlet of the primary heat exchanger and the inlet of the secondary heat exchanger. The first conduit includes a first valve. A second conduit connects the outlet of the secondary heat exchanger to an air load. The second conduit includes a second valve.
Abstract:
An aircraft pressurization system, includes an auxiliary compressor for further compressing compressed air received from a low pressure compressor section of a gas turbine engine while the compressed air is below a predetermined pressure level; a bleed passage for fluidically connecting the auxiliary compressor to the low pressure compressor section; and an environmental control system coupled to an output of the auxiliary compressor for conditioning the compressed air to a predetermined level.