Abstract:
A plasma display panel (PDP) that has a front substrate, a rear substrate arranged opposite to the front substrate, closed-type front barrier ribs arranged between the front substrate and the rear substrate and formed of a dielectric material, the front barrier ribs defining discharge cells together with the front and rear substrates, front and rear discharge electrodes arranged within the front barrier ribs and surrounding the discharge cells and spaced apart from each other, phosphor layers arranged within the discharge cells and a discharge gas injected into discharge cells.
Abstract:
A plasma display panel including: a first substrate and a second substrate utilized to display images; a dielectric wall disposed between the first and second substrates and defining a plurality of discharge cells; a first discharge electrode disposed in the dielectric wall; a second discharge electrode disposed on the second substrate to cross the first discharge electrode; and a phosphor layer formed on the first substrate. Accordingly, plasma can efficiently arrive at the phosphor layer, thereby increasing discharge efficiency.
Abstract:
A plasma display panel. A first substrate and a second substrate are provided opposing one another with a predetermined gap therebetween. Address electrodes are formed on the second substrate. Barrier ribs are mounted between the first substrate and the second substrate defining a plurality of discharge cells. Phosphor layers are formed within the discharge cells. Discharge sustain electrodes are formed on the first substrate. The discharge sustain electrodes include bus electrodes that extend such that a pair of the bus electrodes is provided for each of the discharge cells, and protrusion electrodes extending from each of the bus electrodes such that a pair of opposing protrusion electrodes is formed within an area corresponding to each discharge cell. A distal end of each protrusion electrode includes an indentation such that a gap is formed between the pair of opposing protrusion electrodes, and an aperture is formed in each protrusion electrode.
Abstract:
A plasma display panel where the address electrodes are designed to have perforated portions in the vicinity of display electrodes to prevent the build up of unwanted wall charges in the vicinity of the display electrodes to thus prevent mis-discharge in the plasma display panel. The perforations can be quadrilateral in shape, and can be made to different sizes depending on the color of the phosphor in the vicinity of the perforation. As a result, drive voltage margin quality between the different colors can be improved to produce a more reliable display.
Abstract:
A plasma display panel (PDP) includes first and second substrates opposing one another with a predetermined gap therebetween. The PDP also includes address electrodes formed on a surface of the first substrate opposing the second substrate, and barrier ribs formed in the gap between the first and second substrates. The barrier ribs define discharge cells, and a phosphor layer is formed in each of the discharge cells. Further, discharge sustain electrodes made of a metal material are formed on a surface of the second substrate opposing the first substrate. The discharge sustain electrodes include line sections, each pair of which is formed corresponding to each discharge cell, and extensions are formed extending from the line sections into each of the discharge cells to define openings. Also, indentations are formed in distal ends of each of the extensions such that discharge gaps of differing sizes are formed between each pair of the extensions.
Abstract:
A plasma display panel includes a first substrate and a second substrate opposing one another with a predetermined gap therebetween. Address electrodes are formed on the second substrate. Barrier ribs are mounted in the gap between the first substrate and the second substrate to define a plurality of discharge cells. Phosphor layers are formed in each of the discharge cells. Discharge sustain electrodes are formed in a direction intersecting the address electrodes and paired such that each of the discharge cells is in communication with a pair of the discharge sustain electrodes. Each of the discharge sustain electrodes include extension sections that extend into the discharge cells such that a pair of opposing extension sections is formed in each of the discharge cells. Distal ends of each of the extension sections extended from at least one of each pair of the bus electrodes are formed having a concave section.
Abstract:
A plasma display panel includes a first substrate and a second substrate, the second substrate disposed facing the first substrate, a dielectric wall disposed between the first and second substrates to define a plurality of discharge cells, a plurality of discharge electrode pairs buried within the dielectric wall, a plurality of phosphor layers formed in the discharge cells, and a gas exhaust path unit formed between the dielectric wall and at least one of the substrates.
Abstract:
A plasma display panel including a front substrate, a rear substrate opposing the front substrate, a plurality of discharge cells between the front substrate and the rear substrate, first and second discharge electrodes opposing each other in the discharge cells, dielectric layers for covering the first and second discharge electrodes, address electrodes extending in a direction intersecting the first and second discharge electrodes, auxiliary discharge electrodes spaced apart from the address electrodes and extending in a direction intersecting the first and second discharge electrodes.
Abstract:
A plasma display panel including a first substrate; a second substrate spaced apart from the first substrate and to face the first substrate; a plurality of barrier ribs disposed between the first substrate and the second substrate to define a plurality of discharge cells between the first and second substrates; and a plurality of pairs of discharge electrodes buried in the barrier ribs to surround at least a portion of each of the discharge cells, wherein the discharge cells are disposed in a zigzag fashion.
Abstract:
Provided is a plasma display panel (PDP) having a structure that prevents a frit from penetrating into a display area during a process of sealing the PDP. The PDP includes: a pair of substrates spaced apart from each other and facing each other; a sheet interposed between the pair of substrates and comprising a barrier rib part, defining discharge cells, and a dielectric part disposed on edges of the barrier rib part; first discharge electrodes disposed in the sheet; second discharge electrodes disposed in the sheet and spaced apart from the first discharge electrodes; a frit disposed between the pair of substrates and the dielectric part and sealing the pair of substrates; a groove formed on at least one of the pair of substrates and where at least a part of the frit is disposed; phosphor layers arranged in the discharge cells; and a discharge gas sealed in the discharge cells.