Abstract:
A method and apparatus for managing page-response intervals. When a network entity receives a paging trigger signal, the entity determines a page-response interval to use for paging the mobile station, based on one or more factors such as (i) whether the communication is to be provided to the mobile station over the same air interface and/or same air interface protocol that will carry the paging to the mobile station and/or (ii) what network, interface, or other entity the trigger signal comes from and/or what network communication module receives the trigger signal. The network entity then uses the determined page-response interval when paging the mobile station, waiting that determined period of time after each page attempt before attempting to page again or before concluding that the paging effort failed.
Abstract:
Disclosed is a method and corresponding apparatus for enhanced scheduling of resources based on use of carrier aggregation. The method involves determining that (i) an individual UE is being served with carrier aggregation or with greater than a threshold amount of frequency and (ii) a processor load of the base station is greater than a threshold load. The method then involves, responsive to the determining that the individual UE is being served with carrier aggregation or with greater than a threshold amount of frequency and that the processor load of the base station is greater than the threshold load, causing the base station to allocate an extent of resources to the individual UE without using FSS.
Abstract:
A method and system to help manage transition of a device between wireless access networks. The device engages in a call served by a given access network and the call ends. Responsive to the call ending, (i) a determination is made as to which base station of that network last served the device, (ii) the determined base station is mapped to a proximate base station of another access network, and (iii) a bearer connection is established in the other access network with the proximate base station in anticipation of the device seeking to be served by that base station.
Abstract:
Disclosed herein are systems and methods for symmetrical implementation of inter-cell interference coordination (ICIC) in a radio access network (RAN) having a first base station serving a first set of access terminals and a second base station serving a second set of access terminals. In an embodiment, a network entity makes both a first determination that each access terminal in the first set is receiving at least a threshold-strong signal from the second base station and a second determination that each access terminal in the second set is receiving at least a threshold-strong signal from the first base station. Responsive to making these determinations in combination, the network entity manages an assignment of reverse-link resource blocks in the RAN such that no reverse-link resource blocks are assigned to both an access terminal in the first set and an access terminal in the second set.
Abstract:
Disclosed herein are methods and systems that may help to adjust, e.g., CDMA paging and access parameters in a coverage area, based on the prevalence of devices that are configured for enhanced circuit switch fallback (eCSFB) in the coverage area. For example, a base station in a radio access network (RAN) may: (a) determine a measure CSFB-device prevalence in a coverage area, (b) use the measure of CSFB-device prevalence in the coverage area as a basis for adjusting one or more parameters for communications with via a first channel (e.g., a CDMA paging or access channel), and (c) apply the one or more adjusted parameters to communications with devices via the first channel.
Abstract:
Disclosed herein are methods and systems that may help to adjust, e.g., CDMA paging and access parameters in a coverage area, based on the prevalence of devices that are configured for enhanced circuit switch fallback (eCSFB) in the coverage area. For example, a base station in a radio access network (RAN) may: determine a measure of circuit switch fallback (CSFB) device prevalence in a coverage area, use the measure of CSFB-device prevalence in the coverage area as a basis for updating one or more paging parameters for communications via a paging channel defined under the first air-interface protocol; and apply the one or more updated paging parameters to communications with devices via the paging channel defined under the first air-interface protocol.
Abstract:
Exemplary methods and systems are disclosed herein that may, among other benefits, help a mobile station to conserve power by intelligently determining how often to scan for incoming pages. An exemplary method may be carried out by a mobile station that has most-recently registered with a radio access network in a zone of last registration, and involves the mobile station (a) determining a location of the mobile station in relation to the zone of last registration, (b) using the location of the mobile station in relation to the zone of last registration as a basis for determining a scan period to wait between scans of the paging channel; and (c) periodically scanning the paging channel according to the determined scan period. Furthermore, an exemplary method may be carried out in order to conserve battery power when a mobile station determines that its battery power is low.