Abstract:
A surface cleaning apparatus comprises an air flow passage extending from a dirty air inlet to a clean air outlet, a cyclone positioned in the air flow passage and having a cyclone air inlet, a cyclone air outlet and having a cyclone axis, a suction motor positioned in the air flow passage and having a motor axis, and a filter assembly downstream of the cyclone air outlet and upstream of the suction motor, the filter assembly comprising a longitudinally extending filter axis that may be generally parallel to the cyclone axis, spaced apart longitudinally extending upstream and downstream air flow passages and a longitudinally extending filter media therebetween some. In some embodiments, at least a portion of one of the upstream and downstream air flow passages is positioned interior the filter media.
Abstract:
A surface cleaning apparatus comprises an air flow passage extending from a dirty air inlet to a clean air outlet. The surface cleaning apparatus further comprises a cyclone comprising a cyclone air outlet and positioned in the air flow passage downstream of the dirty air inlet. A suction motor is provided in the air flow passage downstream of the cyclone. A pre-motor filter is upstream of the suction motor and downstream of the cyclone. The pre-motor filter has an upstream side and a downstream side. The surface cleaning apparatus further comprises a bleed valve having an air inlet and an air outlet. The air outlet is positioned between the suction motor and the downstream side of the pre-motor filter and facing the downstream side of the pre-motor filter.
Abstract:
A surface cleaning apparatus comprises an air flow path extending from a dirty air inlet to a clean air outlet and a suction motor. The surface cleaning apparatus may also comprise a cyclone chamber provided in the air flow path. The cyclone chamber may comprise a cyclone air inlet, a cyclone air outlet and a dirt outlet. The surface cleaning apparatus may comprise a dirt collection chamber having a dirt inlet, a dirt collection chamber first end, an opposed dirt collection chamber second end and a longitudinally extending sidewall. The sidewall may comprise a portion that has a longitudinal length and extends away from the dirt inlet towards the opposed dirt collection chamber second end. A transverse cross sectional area of the dirt collection chamber may varies at least once along the length of the portion of the sidewall.
Abstract:
An electricity conducting cord has first and second ends, one of the ends comprising an electrical connection member engageable with a power connection member of an apparatus having an apparatus power rating, at least one of the power connection member and the electrical connection member comprising electrical connectors and a physical cord identification member, the physical cord identification member is configured to inhibit the electricity conducting cord being electrically connected to the power connection member if the electricity conducting cord has a power rating lower than the apparatus power rating.
Abstract:
A domestic apparatus, such as a cooking appliance, uses hydrogen and, optionally electrical heating, to cook food. The cooking appliance may have a cooking surface (e.g. a grilling surface) so as to result in an indoor barbeque, which may be used with no venting or reduced venting requirements.
Abstract:
Several alternate improvements of a vacuum cleaner are provided. In one aspect, the vacuum cleaner utilizes interchangeable components. In another aspect, the vacuum cleaner comprises a chamber having a top, and a first cleaning stage and suction motor are provided on the top. In another aspect, the vacuum cleaner utilizes a reconfigurable divider plate.
Abstract:
A battery operated vacuum cleaner is provided with one or more principal batteries and one or more supplemental batteries. The batteries and a controller are configured such that as the power provided by the principal batteries drops, one or more of the supplemental batteries is operative connected to provide power to the appliance. A method for providing a substantially constant level of power to an appliance, such as a vacuum cleaner, using a plurality of power sources comprises providing power from a principal power source connected to the appliance; monitoring an operating voltage supplied to the appliance to detect if the operating voltage is below a predetermined threshold voltage level; and upon detecting that the operating voltage is below the predetermined threshold voltage level, providing power from k of n supplemental power sources connected to the appliance, where k and n are positive integers, and k is less than or equal to n. Optionally, upon detecting that the operating voltage is below the predetermined threshold voltage level and where k is equal to n, the principal and supplemental power sources are disengaged from the appliance.
Abstract:
The surface cleaning apparatus includes a cyclone positioned in am air flow passage. The cyclone has a cyclone air inlet and a cyclone air outlet, a dirt outlet spaced from the cyclone air inlet, a cyclone chamber wall and a longitudinal axis. The surface cleaning apparatus also includes a dirt collection chamber in communication with the dirt outlet. The dirt collection chamber has an openable wall mounted to the surface cleaning apparatus by a hinge and a centrally positioned longitudinal axis, the openable wall has a center and a hinge side. The surface cleaning apparatus also includes a plate positioned at an interface of the dirt collection chamber and the cyclone. The plate is moveably mounted to the openable wall. The surface cleaning apparatus also includes a biasing member biasing the plate towards the hinge side of the openable wall a suction motor positioned in the air flow passage.
Abstract:
A surface cleaning apparatus comprises an air flow path extending from a dirty air inlet to a clean air outlet and includes an air treatment member. A suction motor may be provided in the air flow path. A suction motor housing sidewall may comprise a plurality of openings provided in a first side thereof. An outer housing may comprise a longitudinally extending outer housing sidewall having an outer housing air outlet. At least a portion of the suction motor housing that has the plurality of openings is located in the outer housing and spaced from the longitudinally extending outer housing sidewall to define a passage between the outer housing and the suction motor housing. The outer housing air outlet may be angularly spaced around the outer housing with respect to the first side of the suction motor housing.
Abstract:
Several embodiments of an upright surface cleaning apparatus are disclosed. The surface cleaning apparatus has a first cyclonic cleaning stage and comprises a surface cleaning head having a dirty fluid inlet. A fluid flow path extends from the dirty fluid inlet to a clean air outlet of the upright surface cleaning apparatus. A support member is mounted to the surface cleaning head. A mounting member mounted to the support member. At least one of a first cleaning stage of the upright surface cleaning apparatus and a suction motor is mounted directly or indirectly to the mounting member. A suction motor is provided in the fluid flow path.