Abstract:
A method for distinguishing a touch type in a touch input device including a touch screen may be provided that includes: determining whether a touch on the touch screen includes a time interval during which the touch has a pressure greater than a first pressure within a first time period; and distinguishing the touch type in accordance with whether or not the touch includes a time interval during which the touch has a pressure greater than the first pressure within the first time period.
Abstract:
Disclosed are a touch screen controller and a method for controlling the same. The touch screen controller includes: a driving part which transmits a driving signal to a touch screen including a plurality of sensing cells; a touch signal sensing unit which transmits a sensing signal to the touch screen and transmits information on a capacitance change pattern of a predetermined area including at least two sensing cells among the plurality of the sensing cells by the driving signal and the sensing signal in correspondence with an object which has touched the touch screen; and a control unit which determines a kind of the object which touches the touch screen, by receiving the information on the capacitance change pattern from the touch signal sensing unit, sets a threshold in correspondence with the determined kind of the object, and determines that a touch signal is generated when a capacitance change amount greater than the set threshold is detected in one sensing cell or a group of sensing cells among the plurality of the sensing cells included in the touch screen.
Abstract:
A touch input device capable of detecting a pressure of a touch on a touch surface includes: a display module and a pressure electrode. The display module includes a display panel and a reference potential layer. An electrical signal, which is changed according to a capacitance between the pressure electrode and the reference potential layer, is detected from the pressure electrode and the capacitance changes depend on a change of a relative distance between the pressure electrode and the reference potential layer, such that the pressure of the touch is detected based on the capacitance.
Abstract:
A touch input device capable of detecting a pressure of a touch on a touch surface includes: a display module including a display panel; a substrate which is located under the display module and is spaced apart from the display module by a spacer layer; and a pressure electrode. An electrical signal, which is changed according to a capacitance between the pressure electrode and the substrate, is detected from the pressure electrode, and the capacitance changes depend on a change of a relative distance between the pressure electrode and the substrate, such that the pressure of the touch is detected based on the capacitance.
Abstract:
Disclosed is a capacitance sensor including: a capacitance-voltage/current converter which converts a capacitance value of a sense capacitor into a voltage signal or a current signal by using an input signal; a multiplier which applies a weight to an output signal of the capacitance-voltage/current converter and outputs the weighted output signal; and an accumulator which accumulates continuously the output signal of the multiplier.
Abstract:
A smartphone includes a cover layer; an LCD panel which is located under the cover layer and includes a liquid crystal layer, and a first glass layer and a second glass layer between which the liquid crystal layer is placed, wherein at least a portion of a touch sensor which senses touch in a capacitive manner is located between the first glass layer and the second glass layer; a backlight unit which is located under the LCD panel; a pressure electrode which is located under the backlight unit; and a shielding member which is located under the pressure electrode.
Abstract:
A smartphone includes: a cover layer; a display module, and comprises a component configured to cause the LCD panel to perform a display function; a pressure electrode which is located under the display module; and a shielding member which is located under the pressure electrode. At least a portion of a touch sensor which senses touch in a capacitive manner is located in the display module.
Abstract:
An LED lighting device includes: an LED unit which includes at least one LED device; and a rectifier which rectifies a current power signal output from the ballast and transfers the rectified current power signal to the LED unit. When the ballast is a low-frequency ballast having an output frequency less than 60 Hz, the rectifier opens between a main path for supplying power to the rectifier from the ballast and an auxiliary path for preheating a starter or filament of the ballast. When the ballast is a high-frequency ballast having the output frequency greater than 20 kHz, the rectifier short-circuits between the main path for supplying the power to the rectifier from the ballast and the auxiliary path for preheating the filament of the ballast.
Abstract:
Disclosed are a touch screen controller and a method for controlling the same, which includes a touch processor which processes at least two touch operation modes independently and respectively in accordance with an object touched on the touch screen.
Abstract:
Disclosed is a method for minimizing noise on a touch panel including a plurality of drive lines and a plurality of sensing lines, wherein the drive lines and the sensing lines cross each other, the method including: performing a dummy scan to sense a signal from the sensing line in a state where a driving signal is not applied to the drive line; and comparing a threshold with a magnitude of a signal obtained through the dummy scan, and estimating noise in a first frequency band, i.e., a frequency of the driving signal.