Abstract:
Mesh anodes, particularly suitable for use in the cathodic protection of reinforcing bars in concrete, make use of resiliently deformable conductive clips. The clips secure together portions of the same or different elongate electrodes at spaced-apart junctions of a mesh formed by the electrode(s), thus providing electrical and mechanical connection between the electrode portions at the junctions.
Abstract:
Precoated corrosion-resistant steel pipe piles, and structures thereof, for driving into the sea bed wherein the waterproofness, corrosion resistance, and scratch resistance of the steel pipe piles are considerably improved by applying a polyethylene resin over the length thereof.
Abstract:
A marine structure comprising steel pipe piles in which the top head, splash zone and tidal zone of each steel pipe pile driven into the sea bed are covered with a polyethylene resinous covering material, and the top head of the steel pipe pile is inserted inside a slab concrete structure, whereby is realized a considerably improvement in the water imperviousness, corrosion resistance, and scratch resistance of the steel pipe piles.
Abstract:
Electrically conductive metal is melted, preferably by a flame, and is sprayed onto a freshly exposed, pitted surface of a concrete member having iron embedded therein. The sprayed metal, when cooled, forms a metal cover on and interlocked with at least part of the newly exposed surface. The cover and the embedded iron are preferably joined in an electric circuit affording a direct current electromotive force, effectively opposite to that which normally would occur, in order to preclude the deterioration of the contained iron.
Abstract:
Submerged offshore steel platform joints are coated with concrete with the steel members between concrete-covered joints protected cathodically to prevent corrosion and corrosion fatigue. The combination allows more economical cathodic protection and extends the useful life of the submerged joints of the offshore structure.
Abstract:
An array of anode assemblies for insertion at a plurality of locations in a gap between a section of a reinforced concrete structure and another solid structure is provided. Each anode assembly comprises an expandable member, an anode attached to the expandable member for protecting a steel reinforcement in the reinforced concrete structure, and an anode connector for interconnecting the array of anode assemblies. During use, each anode assembly of the array of anode assemblies is inserted into the gap, between the section of the reinforced concrete structure and the solid structure, at the plurality of locations. The expandable member of each anode assembly is configured to expand so as to press the anode into contact with a surface of the reinforced concrete structure.
Abstract:
A sacrificial anode assembly for cathodically protecting and/or passivating a metal section, comprising: (a) a cell, which has an anode and a cathode arranged so as to not be in electronic contact with each other but so as to be in ionic contact with each other such that current can flow between the anode and the cathode; (b) a connector attached to the anode of the cell for electrically connecting the anode to the metal section to be cathodically protected; and (c) a sacrificial anode electrically connected in series with the cathode of the cell; wherein the cell is otherwise isolated from the environment such that current can only flow into and out of the cell via the sacrificial anode and the connector. The invention also provides a method of cathodically protecting metal in which such a sacrificial anode assembly is cathodically attached to the metal via the connector of the assembly, and a reinforced concrete structure wherein some or all of the reinforcement is cathodically protected by such a method. A sacrificial anode assembly for cathodically protecting and/or passivating a metal section, includes a cell with an anode and a cathode, a connector attached to the anode of the cell for electrically connecting the anode to the metal section to be cathodically protected; and a sacrificial anode electrically connected in series with the cathode of the cell. The cell is otherwise isolated from the environment such that current can only flow into and out of the cell via the sacrificial anode and the connector. A method of cathodically protecting steel in concrete in which such the sacrificial anode assembly is connected to the steel in an initial step of passivation using a higher current and when the first step is terminated the sacrificial anode alone continues to provide protection.
Abstract:
A galvanic anode system for the corrosion protection of steel in concrete includes a galvanic anode material, which includes of zinc and alloys thereof, embedded in a solid electrolyte, and is characterized in that the galvanically available surface is larger, preferably at least twice as large, as the total geometrical surface of the metal anode. The galvanic anode system is also characterized in that, during operation, during which the anode disintegrates as a sacrificial anode, the galvanically active anode surface is reduced only slightly, preferably is not reduced up to at least 50%, in particular 75%, of the time during use.
Abstract:
A cathode protection method of embedded CFRP anode for reinforced concrete structure includes the following steps. Provide a preformed groove with a predetermined shape and size in a surface of a protection area of a reinforced concrete body, and remove dust in the preformed groove. Provide a CFRP member on the surface of the protection area of the reinforced concrete body. Coat an electrical conductive adhesive material between side surfaces of the reinforcing column of the CFRP member and the preformed groove and between the reinforcing plate and the reinforced concrete body. Connect the CFRP member with a positive electrode of an external DC power supply and the steel reinforcing element with a negative electrode of the external DC power supply.