Abstract:
A method for aligning an image capture device for a print device includes providing a capture stage on which an object to be imaged by the capture device is placed. The capture stage includes a plurality of reference markers spaced apart by a predetermined distance. The reference markers are imaged with the capture device. A distance between the reference markers is measured. A correction difference between the measured distance of the reference markers and the predetermined distance is computed. An angular correction value based on the correction difference is computed. The angular position of the capture device relative to the capture stage is adjusted based upon the angular correction value.
Abstract:
A scanner assembly comprising the following components. A scan module having a first surface and configured to receive an image oriented along the first surface. A carriage having a thickness no thicker than a thickness of the scan module perpendicular to the first surface, the carriage configured to receive the scan module and to move the scan module in a direction of travel. A v-bearing coupled to the carriage proximate to one end of the carriage and protruding from the carriage in a direction perpendicular to the first surface. A scan base having a groove and configured to receive the v-bearing. A belt drive configured to move the v-bearing in the groove of the scan base.
Abstract:
An image scanning apparatus includes a base, a transparent plate, a guide rod disposed between the base and the transparent plate, an optical sensor module, and a carrier mounted on the guide rod and including a first support bracket to place the optical sensor module thereto and having a first pivot connecting portion, a second support bracket having a second pivot connecting portion connected pivotally to the first pivot connecting portion, and an elastic member disposed between the first and second support brackets and biasing upwardly the first support bracket so as to keep the optical sensor module in constant contact with the transparent plate.
Abstract:
A printing system and apparatus assembly that incorporates a transparent platen for supporting and scanning a first image therethrough. The transparent platen includes a translucent display layer having an array of light devices that comprise organic light emitting diodes. A user interface of the system is coupled to the transparent platen with a processor. Based on input and/or data provided at the user interface, an image is displayed through the platen with the display layer.
Abstract:
Disclosed are embodiments of methods, systems, and apparatus for providing multiple image fields or regions on an imaging array. In certain preferred embodiments, a high density imaging array may be partitioned into two or more regions, each of which may be used to render a separate view of the scan volume. This arrangement may provide an increase in the effective scan volume beyond the volume available with a single imager having a single point of view and may allow for reading of encoded symbols at a variety of orientations that would otherwise preclude accurate imaging with a single imager.
Abstract:
A method for aligning an image capture device for a print device includes providing a capture stage on which an object to be imaged by the capture device is placed. The capture stage includes a plurality of reference markers spaced apart by a predetermined distance. The reference markers are imaged with the capture device. A distance between the reference markers is measured. A correction difference between the measured distance of the reference markers and the predetermined distance is computed. An angular correction value based on the correction difference is computed. The angular position of the capture device relative to the capture stage is adjusted based upon the angular correction value.
Abstract:
One embodiment of a scanning stand for devices equipped with a digital camera comprising two inverted-V parts. One inverted-V part includes a sliding platform serving as a holder for a device equipped with a digital camera. Inverted-V parts are connected using nylon ribbons and the distance between inverted-V parts can be adjusted to accommodate documents of various thicknesses. A sheet of transparent acrylic or glass is included to provide means to flatten wrinkles or creases on documents and to straighten pages of bound material near the binding.
Abstract:
A scanner is provided with a main body, hinge, cover member, and plurality of sets of pins and pin holes. The main body includes a transparent plate on the top surface for placing a document. The hinge connects the main body and the cover member. The cover member rotates between an opened and closed state with respect to the main body. The cover member has a bottom surface, which contacts the top surface of the main body when closed. The pins are fanned on either the top surface of the main body or the bottom surface of the cover member, while the pin holes are formed on the opposing surface. The plurality of sets adjusts a positional relationship between the main body and the cover member in the closed state.
Abstract:
An imaging apparatus includes an automatic document feeder having a media feeding section, a media collecting section and a media conveying path extending from the media feeding section to the media collecting section. The imaging apparatus includes a scan head adjacent to the automatic document feeder. The scan head is moveable to a raised position aligned with a portion of the media conveying path for scanning a media sheet in the portion of the media conveying path.
Abstract:
Disclosed is a scanner with a main body, hinge, cover member, and plurality of sets of pins and pin holes. The main body includes a transparent plate on the top surface for placing a document. The hinge connects the main body and the cover member. The cover member rotates between an opened and closed state with respect to the main body. The cover member has a bottom surface, which contacts the top surface of the main body when closed. The pins are fanned on either the top surface of the main body or the bottom surface of the cover member, while the pin holes are formed on the opposing surface. The plurality of sets adjusts a positional relationship between the main body and the cover member in the closed state.