Lightweight multicast acknowledgement technique in communication networks
    141.
    发明授权
    Lightweight multicast acknowledgement technique in communication networks 有权
    通信网络中的轻量组播确认技术

    公开(公告)号:US09544162B2

    公开(公告)日:2017-01-10

    申请号:US14040844

    申请日:2013-09-30

    Abstract: In one embodiment, a message is received at a caching node in a network including an indication of the message's urgency. The message is transmitted to child nodes of the caching node, and upon transmitting the message, a retransmission timer is initiated when the message is urgent, based on the indication of the message's urgency. Then, one or more acknowledgements of receipt of the transmitted message are received from one or more of the child nodes, respectively. Upon expiration of the retransmission timer, when it is determined that one or more of the child nodes did not receive the transmitted message based on the received acknowledgements, the message is retransmitted to the child nodes.

    Abstract translation: 在一个实施例中,在网络中的高速缓存节点处接收消息,包括消息的紧急性的指示。 该消息被发送到高速缓存节点的子节点,并且在发送消息时,基于消息的紧急性的指示,当消息紧急时,发起重传定时器。 然后,分别从一个或多个子节点接收一个或多个接收到发送的消息的确认。 在重传定时器到期时,当确定一个或多个子节点基于接收到的确认没有接收到所发送的消息时,该消息被重传到子节点。

    Distributed architecture for machine learning based computation using a decision control point
    142.
    发明授权
    Distributed architecture for machine learning based computation using a decision control point 有权
    基于机器学习的分布式架构,使用决策控制点进行计算

    公开(公告)号:US09443204B2

    公开(公告)日:2016-09-13

    申请号:US13954230

    申请日:2013-07-30

    CPC classification number: G06N99/005 G06F11/3433 H04L67/1029

    Abstract: In one embodiment, a request is received from a requesting node in a network to assist in distributing a task of the requesting node. Upon receiving the message, a capability to perform the task of one or more helping nodes in the network is evaluated, and a helping node of the one or more helping nodes is selected to perform the task based on the evaluated capability of the selected helping node. The distribution of the task is then authorized from the requesting node to the selected helping node.

    Abstract translation: 在一个实施例中,从网络中的请求节点接收到请求以帮助分发请求节点的任务。 在接收到消息时,评估执行网络中的一个或多个帮助节点的任务的能力,并且基于所选择的帮助节点的评估能力来选择一个或多个帮助节点的帮助节点来执行任务 。 然后从请求节点向所选择的帮助节点授权任务的分发。

    Accelerating learning by sharing information between multiple learning machines
    143.
    发明授权
    Accelerating learning by sharing information between multiple learning machines 有权
    通过在多学习机器之间共享信息来加速学习

    公开(公告)号:US09436917B2

    公开(公告)日:2016-09-06

    申请号:US13937631

    申请日:2013-07-09

    CPC classification number: G06N99/005 H04L29/12 H04L61/00

    Abstract: In one embodiment, variables maintained by each of a plurality of Learning Machines (LMs) are determined. The LMs are hosted on a plurality of Field Area Routers (FARs) in a network, and the variables are sharable between the FARs. A plurality of correlation values defining a correlation between the variables is calculated. Then, a cluster of FARs is computed based on the plurality of correlation values, such that the clustered FARs are associated with correlated variables, and the cluster allows the clustered FARs to share their respective variables.

    Abstract translation: 在一个实施例中,确定由多个学习机器(LM)中的每一个维护的变量。 LM在网络中托管在多个场区域路由器(FAR)上,变量在FAR之间可共享。 计算定义变量之间的相关性的多个相关值。 然后,基于多个相关值计算一组FAR,使得聚类FAR与相关变量相关联,并且该群集允许群集FAR共享其各自的变量。

    DATA VISUALIZATION IN SELF LEARNING NETWORKS
    144.
    发明申请
    DATA VISUALIZATION IN SELF LEARNING NETWORKS 审中-公开
    数据可视化在自学习网络

    公开(公告)号:US20160219071A1

    公开(公告)日:2016-07-28

    申请号:US14990064

    申请日:2016-01-07

    CPC classification number: H04L63/1425 G06N20/00 H04L63/1416

    Abstract: In one embodiment, a first device in a network maintains raw traffic flow information for the network. The first device provides a compressed summary of the raw traffic flow information to a second device in the network. The second device is configured to transform the compressed summary for presentation to a user interface. The first device detects an anomalous traffic flow based on an analysis of the raw traffic flow information using a machine learning-based anomaly detector. The first device provides at least a portion of the raw traffic flow information related to the anomalous traffic flow to the second device for presentation to the user interface.

    Abstract translation: 在一个实施例中,网络中的第一设备维护网络的原始业务流信息。 第一个设备将原始流量信息的压缩摘要提供给网络中的第二个设备。 第二设备被配置为将用于呈现的压缩摘要转换为用户界面。 第一设备使用基于机器学习的异常检测器基于对原始业务流信息的分析来检测异常业务流。 第一设备将与异常业务流相关的原始业务流信息的至少一部分提供给第二设备以呈现给用户接口。

    EVENT CORRELATION IN A NETWORK MERGING LOCAL GRAPH MODELS FROM DISTRIBUTED NODES
    145.
    发明申请
    EVENT CORRELATION IN A NETWORK MERGING LOCAL GRAPH MODELS FROM DISTRIBUTED NODES 审中-公开
    网络中的事件关联与分布式节点的局部图形模型

    公开(公告)号:US20160219066A1

    公开(公告)日:2016-07-28

    申请号:US14605916

    申请日:2015-01-26

    CPC classification number: H04L63/1425 H04L63/1458

    Abstract: In one embodiment, a device in a network receives an indication of a network anomaly detected by a first graph-based anomaly detection model hosted by a first node in the network. The device identifies one or more additional graph-based anomaly detection models based on the network anomaly detected by the first graph-based anomaly detection model. The device correlates one or more network events from the one or more additional graph-based anomaly detection models with the network anomaly detected by the first graph-based anomaly detection model. The device identifies a cause of the network anomaly using the one or more network events from the one or more additional graph-based anomaly detection models that are correlated with the network anomaly detected by the first graph-based anomaly detection model.

    Abstract translation: 在一个实施例中,网络中的设备接收由网络中的第一节点托管的第一基于图的异常检测模型检测到的网络异常的指示。 该设备基于第一个基于图形的异常检测模型检测到的网络异常识别一个或多个附加的基于图的异常检测模型。 该装置将来自一个或多个附加的基于图的异常检测模型的一个或多个网络事件与由第一基于图的异常检测模型检测到的网络异常相关联。 该设备使用来自与由第一基于图表的异常检测模型检测到的网络异常相关联的一个或多个附加的基于图的异常检测模型,使用一个或多个网络事件来识别网络异常的原因。

    Remote probing for remote quality of service monitoring
    146.
    发明授权
    Remote probing for remote quality of service monitoring 有权
    远程检测远程服务质量监控

    公开(公告)号:US09385933B2

    公开(公告)日:2016-07-05

    申请号:US13926672

    申请日:2013-06-25

    CPC classification number: H04L43/10

    Abstract: In one embodiment, a targeted node in a computer network receives a probe generation request (PGR), and in response, generates a link-local multicast PGR (PGR-Local) carrying instructions for generating probes based on the PGR. The targeted node then transmits the PGR-Local to neighbors of the targeted node to cause one or more of the neighbors to generate and transmit probes to a collection device in the computer network according to the PGR-Local instructions. In another embodiment, a particular node in a computer network receives a link-local multicast probe generation request (PGR-Local) from a targeted node in the computer network, the targeted node having received the PGR-Local from a remote device, and determines how to generate probes based on instructions carried within the PGR-Local before sending one or more probes to a collection device in the computer network according to the PGR-Local instructions.

    Abstract translation: 在一个实施例中,计算机网络中的目标节点接收探测生成请求(PGR),并且作为响应,生成携带用于基于PGR生成探测的指令的链路本地多播PGR(PGR-Local)。 目标节点然后将PGR-Local发送到目标节点的邻居,以使得一个或多个邻居根据PGR-Local指令在计算机网络中生成探测到发送设备。 在另一个实施例中,计算机网络中的特定节点从计算机网络中的目标节点接收链路本地多播探测生成请求(PGR-Local),目标节点已经从远程设备接收到PGR-Local,并且确定 根据PGR-Local指令,在将一个或多个探针发送到计算机网络中的收集设备之前,如何根据PGR-Local中携带的指令生成探测。

    PREDICTIVE LEARNING MACHINE-BASED APPROACH TO DETECT TRAFFIC OUTSIDE OF SERVICE LEVEL AGREEMENTS
    148.
    发明申请
    PREDICTIVE LEARNING MACHINE-BASED APPROACH TO DETECT TRAFFIC OUTSIDE OF SERVICE LEVEL AGREEMENTS 有权
    检测服务水平协议之外的交通活动的基于预测学习机器的方法

    公开(公告)号:US20150195149A1

    公开(公告)日:2015-07-09

    申请号:US14164425

    申请日:2014-01-27

    Abstract: In one embodiment, a request to make a prediction regarding one or more service level agreements (SLAs) in a network is received. A network traffic parameter and an SLA requirement associated with the network traffic parameter according to the one or more SLAs are also determined. In addition, a performance metric associated with traffic in the network that corresponds to the determined network traffic parameter is estimated. It may then be predicted whether the SLA requirement would be satisfied based on the estimated performance metric.

    Abstract translation: 在一个实施例中,接收到关于网络中的一个或多个服务水平协议(SLA)进行预测的请求。 还确定了与根据一个或多个SLA的网络流量参数相关联的网络流量参数和SLA要求。 此外,估计与确定的网络流量参数对应的网络中的流量相关联的性能指标。 然后可以基于估计的性能度量来预测是否满足SLA要求。

    DYNAMICALLY ADJUSTING A SET OF MONITORED NETWORK PROPERTIES USING DISTRIBUTED LEARNING MACHINE FEEBACK
    149.
    发明申请
    DYNAMICALLY ADJUSTING A SET OF MONITORED NETWORK PROPERTIES USING DISTRIBUTED LEARNING MACHINE FEEBACK 有权
    使用分布式学习机FEEBACK动态调整一组监控网络属性

    公开(公告)号:US20140222996A1

    公开(公告)日:2014-08-07

    申请号:US13941063

    申请日:2013-07-12

    CPC classification number: H04L43/02 H04L41/16 H04L43/103 Y04S40/168

    Abstract: In one embodiment, techniques are shown and described relating to dynamically adjusting a set of monitored network properties using distributed learning machine feedback. In particular, in one embodiment, a learning machine (or distributed learning machines) determines a plurality of monitored network properties in a computer network. From this, a subset of relevant network properties of the plurality of network properties may be determined, such that a corresponding subset of irrelevant network properties based on the subset of relevant network properties may also be determined. Accordingly, the computer network may be informed of the irrelevant network properties to reduce a rate of monitoring the irrelevant network properties.

    Abstract translation: 在一个实施例中,示出和描述了关于使用分布式学习机器反馈动态地调整一组被监控的网络属性的技术。 特别地,在一个实施例中,学习机器(或分布式学习机器)在计算机网络中确定多个被监控的网络属性。 由此,可以确定多个网络属性的相关网络属性的子集,使得也可以确定基于相关网络属性子集的不相关网络属性的对应子集。 因此,可以向计算机网络通知不相关的网络属性,以降低监视不相关网络属性的速率。

    LEARNING MACHINE BASED COMPUTATION OF NETWORK JOIN TIMES
    150.
    发明申请
    LEARNING MACHINE BASED COMPUTATION OF NETWORK JOIN TIMES 有权
    基于学习机器的网络加工时间计算

    公开(公告)号:US20140222975A1

    公开(公告)日:2014-08-07

    申请号:US13948367

    申请日:2013-07-23

    CPC classification number: H04L41/16 H04L41/142

    Abstract: In one embodiment, techniques are shown and described relating to learning machine based computation of network join times. In particular, in one embodiment, a device computes a join time of the device to join a computer network. During joining, the device sends a configuration request to a server, and receives instructions whether to provide the join time. The device may then provide the join time to a collector in response to instructions to provide the join time. In another embodiment, a collector receives a plurality of join times from a respective plurality of nodes having one or more associated node properties. The collector may then estimate a mapping between the join times and the node properties and determines a confidence interval of the mapping. Accordingly, the collector may then determine a rate at which nodes having particular node properties report their join times based on the confidence interval.

    Abstract translation: 在一个实施例中,与基于学习机的网络连接时间的计算相关的技术被示出和描述。 特别地,在一个实施例中,设备计算设备加入计算机网络的加入时间。 在加入过程中,设备向服务器发送配置请求,并接收指令是否提供加入时间。 响应于提供加入时间的指令,设备可以向收集器提供加入时间。 在另一个实施例中,收集器从具有一个或多个关联节点属性的相应多个节点接收多个连接时间。 然后,收集器可以估计连接时间和节点属性之间的映射,并确定映射的置信区间。 因此,收集器然后可以基于置信区间来确定具有特定节点属性的节点报告其连接时间的速率。

Patent Agency Ranking