Abstract:
The invention makes a suitable selection from zoom modes and lens elements so thin that the thickness of each lens group can reduced, thereby slimming down a zoom lens with great thoroughness and, hence, an electronic image pickup system. The electronic image pickup system a zoom lens and an electronic image pickup device located on the image plane side of the zoom lens. The zoom lens comprises, in order from the object side, a first lens group G1 comprising two lens components and having generally negative power and a second lens group G2 comprising two lens components and having generally positive power. The focal length of the zoom lens can be varied by varying the air separation between the first lens group G1 and the second lens group G2. The zoom lens should satisfy at least one of conditions (a) to (n).
Abstract:
A zoom lens with an easily bendable optical path has high optical specification performance such as a high zoom ratio, a wide-angle arrangement, a small F-number and reduced aberrations. It includes a first lens group G1 remaining fixed during zooming, a second lens group G2 having negative refracting power and moving during zooming, a third lens group G3 having positive refracting power and moving during zooming, and a fourth lens group G4 having positive refracting power and moving during zooming and focusing. The first lens group comprises, in order from an object side thereof, a negative meniscus lens component convex on an object side thereof, a reflecting optical element for bending an optical path and a positive lens. Upon focusing on an infinite object point, the fourth lens group G4 moves in a locus opposite to that of movement of the third lens group G3 during zooming.
Abstract:
The invention has for its object to use a zoom system that comprises a reduced number of lens elements, is compact and simplified, and has high image-formation capability, thereby achieving thorough size reductions in video cameras or digital cameras. A zoom lens for use on an electronic imaging system comprises a negative first lens group G1, an aperture stop S, a positive second lens group G2 and a positive third lens group G3. Upon zooming from the wide-angle end to the telephoto end of the zoom lens, the second lens group G2 moves only toward the object side of the zoom lens and the third lens group G3 moves in a locus different from that of the second lens group G2. The second lens group G2 is made up of a positive first lens element having an aspheric surface on its object side, a negative second lens element, a positive third lens element and a negative fourth lens element. The first and second lens elements are cemented together, and the third lens group G3 moves independently for focusing. The second lens group G2 satisfies condition (1) with respect to the Abbe numbers of the third and fourth lens elements, condition (2) with respect to the shape of the third lens element, and condition (3) with respect to the composite focal length of the third and fourth lens elements.
Abstract:
An imaging apparatus has an imaging element which converts an optically formed image to an electrical signal by photoelectric conversion and acquires image data. The imaging apparatus comprises an optical magnification changing mechanism which optically changes a magnification of an image, and an electronic magnification change mechanism which reduces or expands a magnification with respect to image data by signal processing, and provides a magnification-changed image according to a predetermined magnification based on the optical magnification changing mechanism and the electronic magnification change mechanism. The optical magnification changing mechanism is configured so that a magnification is discrete and a focal position changes together with a focal distance. The electronic magnification change mechanism carries out an interpolation process such that the number of pixels is increased with respect to a predetermined region of read image data during an expanding process, and carried out a process for discretely sampling a wide region as compared with a readout region obtained by the sampling provided when no magnification conversion is made, during a reducing process, and converting the sampled region data to predetermined image data by a correcting process, thereby offsetting a change of the focal position in the optical magnification changing mechanism.
Abstract:
A zoom lens includes, in order from the object side, the first lens unit consisting of one negative lens component in which a plurality of lens components are cemented to one another and the second lens unit including one negative lens component and having positive refracting power as a whole. In this case, the zoom lens satisfies the following condition: 0.15
Abstract:
A zoom lens has, on the most object side, a first lens unit that has a prism with a reflecting surface for folding the path of rays, that has a negative refractive power in its entirety and that is fixed in a magnification change, and an aperture stop that is fixedly positioned in reference to the image pickup surface. The ray-entering surface of the prism has an aspherical surface concave toward the object side that exerts a weaker power for divergence at a position thereon farther from the optical axis. Whereby, a zoom lens with high optical specification performance and extremely thin size in depth direction is provided.
Abstract:
The present invention relates to a digital still camera that is compatible with an increasing number of pixels and uses a zoom lens having a high zoom ratio yet compact, simple construction, wherein chromatic aberration of the zoom lens are reduced and the zoom lens is kept against the influences of chromatic aberrations. The zoom lens comprises a lens group G2 having negative refracting power and at least one lens group G3 located on the image side of G2 and having positive refracting power. Upon zooming, the spacing between the negative lens group G2 and the positive lens group G3 changes. The positive lens group G3 includes two doublet components, in each of which a positive lens element and a negative lens element are cemented together in order from the object side of G3. The doublet component located on the image side of G3 has a meniscus form concave on its image side.
Abstract:
The invention relates to a zoom lens system which is compatible with a TTL optical finder having a diagonal field angle of at least 70° at the wide-angle end and about 7 to 10 magnifications and is fast as represented by an F-number of about 2.8 at the wide-angle end. The zoom lens system comprises a first lens group G1 which is movable along its optical axis during zooming and has positive refracting power, a second lens group G2 which moves toward the image side along the optical axis during zooming from the wide-angle end to the telephoto end and has negative refracting power and rear lens groups G3 to G6 having at least two spacings variable during zooming. In particular, the focal length f1 of the first lens group G1 should meet 6
Abstract translation:本发明涉及一种变焦透镜系统,其与在广角端具有至少70°的对角场角和约7至10个放大倍数的TTL光学取景器兼容,并且如F-number of about 2.8在广角端。 变焦透镜系统包括:第一透镜组G1,其可在变焦期间沿着其光轴移动并且具有正折射力;第二透镜组G2,在从广角端到广角端的变焦期间沿着光轴朝向像侧移动; 长焦端并且具有负折射力和具有在变焦期间可变的至少两个间隔的后透镜组G3至G6。 特别地,第一透镜组G1的焦距f1应满足6
Abstract:
A secondary image formation type view finder comprising an objective optical system, a first mirror for folding an optical axis, a relay lens system and a second mirror for folding the optical axis, wherein an optical axis of the relay lens system is disposed so as to be included in a plane nearly perpendicular to an optical axis of the objective optical system, and the first mirror and the second mirror and disposed nearly in parallel with each other, thereby reducing a space to be occupied by the view finder.
Abstract:
The invention provides a compact and simple wide-angle lens system composed of a reduced number of lenses and having high productivity, which is well suited for use on digital cameras, while making sure of the space necessary for edge, and middle thicknesses, and constructing the system and, at the same time, having a given back focus and exit pupil position, and good-enough image-forming capability, and which comprises two lens groups or, in order from the object side thereof, a negative lens group GN and a positive lens group GP with an aperture stop D midway between them and a lens located nearest to the object side thereof being defined by a positive lens, said positive lens conforming three conditions in terms of focal length, shape factor, and making sure of sufficient edge thickness.