Abstract:
A method and apparatus for removing metallic material from a circulating well fluid stream provides a treatment vessel that is divided into first and second sections. Each of the sections includes a magnetic field that can be in the form of one or more magnets. In one embodiment, multiple magnets are provided in each of the sections. Manifolds attach to an influent and to an effluent of the treatment vessel. Each manifold enables selective transfer of fluid to either of the selected sections. Similarly, discharge of circulating fluid can be from either of the sections via a discharge manifold. The treatment vessel enables continuous treatment by valving fluid flow so that only one section need be used at a time in order that the other section could be serviced for removing collected metallic material from the magnetic field or from the magnets.
Abstract:
An air filtration system includes a frame directing an airflow through the air filtration system and a media filter disposed in the frame including one or more filtration elements. The system further includes one or more alignment features and one or more sealing elements interactive with the one or more alignment features to prevent incorrect installation of the media filter into the frame. A method of installing a media filter in an air filtration system includes aligning an alignment feature of the media filter with an opening in a frame of the air filtration system and inserting the media filter into the frame. The alignment feature ensures that the media filter is inserted in the frame in a correct orientation.
Abstract:
A system, apparatus and method for magnetically separating a fluid flow passing through a pipeline are provided. A magnetic separator assembly having a plurality of elongate magnetic members is provided. Each magnetic member can have a first end and a second end. A cleaner plate can be provided that can move along the magnetic members. After the magnetic separator assembly is used to collect magnetic particles from a fluid flow in a pipeline, the magnetic separator assembly can be cleaned by sliding the cleaning plate along the magnetic members.
Abstract:
A magnetic separator comprising a vibratory conveyor for vibratorily flowing non-ferrous articles and articles containing ferrous material within the magnetic field of a transverse extending magnet to magnetically capture the articles containing the ferrous material while allowing the non-ferrous articles to flow therepast. The magnet is periodically retractable to remove ferrous articles magnetically adhered thereto. The use of a set of transverse extending magnets enables a continuous on-the-go separation of articles containing ferrous material from non-ferrous articles without having to shut down the vibratory conveyor.
Abstract:
A device for recovering magnetic particles trapped on a magnetic plug that has a bar magnet to retain the magnetic particles entrained by a liquid in which the magnetic plug is immersed, the device including a cap including a non-magnetic tube having a proximal end having an opening for the insertion of the magnet into the tube and a closed distal end, the tube to cover the magnet when it is inserted into the tube, a retention device to ensure retention between the cap and the magnet when the magnet is inserted into the tube, an extraction device provided with an opening to ensure insertion of the tube into the extraction device, the extraction device to cover the tube when the tube is inserted into the extraction device and to receive the particles trapped on the tube when the magnet is withdrawn from the tube, and a retention device to ensure retention between the extraction device and the tube.
Abstract:
A magnetic separation apparatus (10) for separating magnetic materials from non-magnetic materials in a material flow comprising self cleaning magnetic separators (15) comprising: a cylinder (20) having a first end closer to a material flow than its second end in use, a piston (25) slidingly mounted within the cylinder (20), and a magnetic shaft (30) extending from the piston (25), the piston (25) and cylinder (20) adapted to move the magnetic shaft (30) between an extended position (31) and a retracted position (32), such that in the extended position (32), at least a sleeveless portion of an outer surface of the magnetic shaft (30) is exposed to the material flow and in the retracted position the magnetic portion is retracted substantially or wholly within the cylinder (20), the apparatus including a protected shaft wiper (120) and shaft seal (125) within the first end of the cylinder (20) for removing extracted magnetics.
Abstract:
A novel design of filters for removing iron rust particulates and other polymeric sludge from refinery and chemical process streams that are paramagnetic in nature is provided. The performance of these filters is greatly enhanced by the presence of the magnetic field induced by magnets. Basically, the filter comprises a high-pressure vessel with means to support the plurality of magnets in the form of bars or plates that are encased in stainless steel tubes or columns. Filters with various configurations are disclosed for accommodating the removal of contaminants from the process streams of different industries, with high efficiency for contaminants removal, simple construction, low operational and maintenance costs, and low hazardous operation.
Abstract:
A magnetic filtration apparatus to separate ferrous contaminant material from a working fluid. The separation apparatus has a housing that is divided into a plurality of filtration chambers, each chamber having an elongate magnetic core to generate a magnetic field to entrap the contaminant material as it flows through the filter body. A fluid communication passageway is provided between the first and second chambers and is positioned such that the fluid exposure to the magnetic fields is maximised.
Abstract:
An apparatus is disclosed for removing iron powder from rolling oil used in a rolling mill has less trouble and ensures easy maintenance and long lifetime as well as improved workability. Each part combined to the apparatus can be moved and worked individually so as to facilitate repair while enhancing the effect of removing iron powder from the rolling oil. The apparatus includes a magnetic unit that is vertically supported on a frame and moved up and down by elevating means to be located inside or above the oil tank, and a scraper unit disposed at one side of the frame so as to be transverse to the magnetic unit. The scraper unit includes a scraper separating iron powder from the surface of the magnetic unit, and a chute positioned under the scraper to collect and convey iron powder.
Abstract:
A magnetic separator comprising a vibratory conveyor for vibratorily flowing non-ferrous articles and articles containing ferrous material within the magnetic field of a transverse extending magnet to magnetically capture the articles containing the ferrous material while allowing the non-ferrous articles to flow therepast. The magnet is periodically retractable to remove ferrous articles magnetically adhered thereto. The use of a set of transverse extending magnets enables a continuous on-the-go separation of articles containing ferrous material from non-ferrous articles without having to shut down the vibratory conveyor.