Abstract:
This disclosure relates to operation and management of cellular communication systems including cells and access points operating in unlicensed frequency bands. According to some embodiments, a base station in a network may receive operation and management policy information, including information for configuring network elements operating in unlicensed frequency bands. The policy information may include information for coordinating network elements operating in unlicensed frequency bands in a manner configured to reduce interference in the unlicensed frequency bands. The base station may provide configuration information to one or more network elements in the network operating in unlicensed frequency bands. The configured network elements may operate in the unlicensed frequency bands in accordance with the configuration information.
Abstract:
This disclosure relates to Wi-Fi signaling in conjunction with cellular communication in unlicensed frequency bands for efficient co-existence. According to one embodiment, a cell may be established between a cellular base station and a wireless user equipment device on a frequency channel in an unlicensed frequency band. A cellular communication may be scheduled between the base station and the user equipment device. A Wi-Fi signal may be transmitted on the frequency channel in conjunction with the scheduled cellular communication. The Wi-Fi signal may indicate a length of the scheduled cellular communication using Wi-Fi signaling. The scheduled cellular communication may be performed via the cell.
Abstract:
Apparatus and methods for frequency hopping among a set of frequency channels used for secondary cells by wireless devices operating with carrier aggregation across a combination of licensed and unlicensed radio frequency (RF) bands are described. A wireless device establishes a connection with an eNodeB using a primary component carrier (PCC) of a primary cell in a licensed radio frequency band. The wireless device obtains a configuration for a secondary cell operating in the unlicensed radio frequency band from the eNodeB, the configuration including a set of RF channels and a frequency-hopping pattern for communicating via a secondary component carrier in the secondary cell. The wireless device transmits to or receives from the eNodeB, via the SCC during a first hop of the frequency-hopping pattern using a first frequency channel in the set of frequency channels, and using a second frequency channel during a second hop.
Abstract:
This application presents techniques for an LTE user equipment (UE) to use an extended service request (ESR) extension for LTE TDD to FDD redirection for mobile originated and mobile terminated VoLTE calls. These techniques include the UE informing the network that it supports the particular features of the ESR extensions presented. Once the UE attaches to the network, a radio resource control (RRC) message can be sent to indicate that the UE supports the new ESR extension, after which the UE can use the new ESR extension to facilitate an LTE TDD to FDD redirection for the VoLTE call.