Abstract:
Systems and methodologies are described that facilitate broadcasting an interference level and adjusting transmit power corresponding to a reverse link in accordance with the interference level. An interference indication can be broadcasted on a broadcast channel in a wireless communication system. In response to the broadcast, mobile devices can adjust transmit power on the reverse link based upon considerations of the interference level. Further, mobile devices can evaluate an initial set point of a transmit power level during periods of inactivity.
Abstract:
Aspects of the present disclosure may simplify the negotiation of resources by defining and/or using sequences for sets of resources for enhanced inter-cell interference coordination. According to aspects, a configuration of protected resources may have an ordering such that a pattern representing ‘k’ protected resources overlaps with a pattern representing ‘k+1’ protected resources. In an aspect, each pattern may comprise a bitmap with one or more bits set to a value to indicate the one or more protected subframes. In an aspect, a bitmap of a pattern corresponding to ‘k’ protected subframes differs from a bitmap of a pattern corresponding to ‘k+1’ protected subframes by a single bit value. According to aspects, an interfering evolved Node B may limit transmissions during protected subframes based on the selected pattern.
Abstract:
User equipment, systems, apparatuses, methods and/or computer program products are provided to facilitate random access procedures in a wireless communication network. The selection and utilization of uplink and downlink component carriers for conducting contention-free and contention-based random access procedures is facilitated in a multiple component carrier system, where a user equipment is configured with multiple uplink and downlink component carriers. This Abstract is provided for the sole purpose of complying with the Abstract requirement rules that allow a reader to quickly ascertain the disclosed subject matter. It is therefore to be understood that it should not be used to interpret or limit the scope or the meaning of the claims.
Abstract:
Methods and apparatus for communicating between an access terminal (AT) and an Access Point (AP) are described. For communications over the air link, between an AP and an AT a PN (Pseudo-random Noise) code based address is used as an AP identifier, e.g., address. The PN code based address may be based on Pilot PN code based signals received from an AP. Thus, the PN based AP address may be determined from pilot signals received from an AP. The PN based AP address may be a shortened version of a PN code corresponding to an AP, a full PN code corresponding to an AP, or a value which can be derived in a known manner from a PN code corresponding to an AP.
Abstract:
Systems, methods and apparatuses are provided that facilitate selecting resources, such as time slots, subframes, etc., for performing bandwidth switching related to activating and/or deactivating one or more carriers. A data portion of one or more subframes can be selected for performing bandwidth switching. In addition, a device can determine whether one or more downlink grants are received in the one or more subframes, and can avoid selecting such subframes. The device can alternatively perform the bandwidth switching and request retransmission of the data portion. Additionally or alternatively, the device can determine a type of the one or more subframes and/or signals transmitted in the one or more subframes to determine whether to perform bandwidth switching in the subframes. The bandwidth switching can include changing a sampling rate, reconfiguring frequency filters, modifying a local oscillator, etc.
Abstract:
Systems and methods are provided for processing wireless signal components for a mobile wireless access broadband service. This can include processes for measuring signal strength of an alternative frequency by tuning away from an existing frequency associated with an existing communications path. Such processes allow determining if the alternative frequency supports a subsequent communications path in a mobile broadband wireless application. Upon the determination, the process can automatically select the subsequent communications path based in part on the measured signal strength.
Abstract:
In a communication system in which a gateway entity is linked to a plurality of infrastructure entities which in turn are operable to communicate with an access terminal, the access terminal needs first to establish a data attachment point (DAP) with one of the infrastructure entities. Handoff of the DAP from one infrastructure entity to another infrastructure entity is initiated by the access terminal. The access terminal weighs factors such as the link conditions with the various infrastructure entities, the time since the last DAP handoff, and time duration communicating with the current infrastructure entity before proceeding with the DAP handoff.
Abstract:
An apparatus for accessing an access network includes a processing system configured to maintain an active set comprising a plurality of network functions, the processing system being further configured to support a handoff of a network layer attachment point from a first one of the network functions to a second one of the network functions by sending a message to each of the network functions which identifies the second one of the network functions as a target of the handoff and performing a binding update for the second one of the network functions with a home agent.
Abstract:
Systems and methodologies are described that facilitate compressing headers for relay nodes. In particular, a plurality of internet protocol (IP) headers, tunneling protocol headers, and/or other routing headers in a packet can be compressed to facilitate efficient communications of packets between relay nodes and/or a donor access point. An access point receiving packets to be compressed can provide a disparate access point with a compression context and an uncompressed packet. The disparate access point can generate a decompression context related to subsequent packets having similar header values and can store the decompression context with the context identifier. The access point can subsequently compress received packets having similar header values and communicate the compressed packets with the context identifier to the disparate access point. The disparate access point can apply the previously generated decompression context associated with the context identifier to decompress the packets.
Abstract:
Systems and methods are disclosed that facilitate wireless communication using resource utilization messages (RUMs), in accordance with various aspects. A RUM may be generated for a first node, such as an access point or an access terminal, to indicate that a first predetermined threshold has been met or exceeded. The RUM may be weighted to indicate a degree to which a second predetermined threshold has been exceeded. The first and/or second predetermined thresholds may be associated with various parameters associated with the node, such as latency, throughput, data rate, spectral efficiency, carrier-to-interference ratio, interference-over-thermal level, etc. The RUM may then be transmitted to one or more other nodes to indicate a level of disadvantage experienced by the first node.