Abstract:
A communication system for use in a wireless network includes: an audio module configured to provide packets indicative of audio for a part of a communication between the communication system and another communication system, the communication spanning packet times, the packets including at least critical packets indicative of critical audio; and a transceiver coupled to the audio module and configured to cause: the critical packets to be conveyed for transmission; and first non-critical packets, indicative of non-critical audio, to be conveyed for transmission such that (1) the first non-critical packets represent less than all of a time between transmission of critical packets and (2) no more than a threshold number of packet times will pass without one of the critical packets or one of the first non-critical packets being conveyed by the transceiver for transmission.
Abstract:
A method and apparatus for generating a cryptosync is disclosed that generates a cryptosync with the desired variability without the overhead in complexity and size of prior cryptosyncs. The cryptosync is generated from a combination of fields including fields relating to the segmentation and reassembly of the data packets at a transmitting terminal and a receiving terminal. The resultant cryptosync does not repeat during the use of a particular security key.
Abstract:
A route protocol is established whereby a mobile device can communicate to a multitude of (receiving) base stations though a tunnel created through a serving base station. A message that includes a Route Creation Header can be transmitted by the mobile device to create the tunnel. The Route Creation Header is reviewed by the receiving base station while the mobile device is in a Waiting-To-Open State. Various errors might occur with respect to the Route Creation Header. These errors can be conveyed to the mobile device by base station by setting one or more error code fields. Once the errors are resolved, another attempt to create a tunnel with base station can be made, if desired.
Abstract:
Systems, methods, devices, and computer program products are described for supporting macrocell-to-femtocell hand-ins of active macro communications for mobile access terminals. An out-of-band (OOB) link is used to detect that an access terminal is in proximity of a femtocell (e.g., using an OOB radio integrated with the femtocell or in a common subnet with the femtocell). Having detected the access terminal in proximity to the femtocell, an OOB presence indication is communicated to a femto convergence system disposed in a core network in communication with the macro network to effectively pre-register the access terminal with the femto-convergence system. When the femto convergence system receives a handoff request from the macro network implicating the pre-registered access terminal, it is able to reliably determine the appropriate target femtocell to use for the hand-in according to the pre-registration, even where identification of the appropriate target femtocell would otherwise be unreliable.
Abstract:
The present invention is a method and apparatus for periodic orientation of arrays of mechanically linked heliostats positioned on rotatable shafts such that incident sunlight is focused on a stationary object. In each altitudinal orientation a minuscule predefined push is given by an actuator and the time interval between each altitudinal orientation is 2×(T2−T1)/n. For azimuthal reorientation, the magnitude of rotation of rotatable shafts is determined by (Y×Sin γ)/2 degrees, and as per the position of the sun in the sky, the determined magnitude in degrees is added/subtracted to form angle θ′. The length ‘C’ of the linear actuator with its arm at angle θ can be extended/retracted to length ‘C1’ such that angle θ′ is achieved, wherein an arm affixed with each rotatable shaft and coupled with a linear actuator provides the ability to rotate the rotatable shaft in clockwise or anticlockwise direction.
Abstract:
Systems and methods for switching among heterogeneous networks and inter-working between a source access system and a target access system. An inter-system handoff control component can facilitate setting an IP tunneling by the mobile unit, wherein IP addresses for inter-working security gateway and Radio Access Network of the target access system can be identified. The inter-system handoff control component can then implement tunneling between the source system and the target system, wherein signaling/packeting associated with the target system can be transferred over the source system.
Abstract:
A method and apparatus are disclosed for negotiating and managing one or more personalities in a wireless communications system. The method comprises advertising one or more supported initial protocol set identifiers. Furthermore, the method comprises selecting a starting initial protocol set identifier from the advertised initial protocol set identifiers. In addition, the method comprises establishing a session based on the selected starting initial protocol set identifier. The method also comprises establishing a connection between an access terminal and an access network based on the selected initial protocol set identifier.
Abstract:
A mobile station for wireless communication includes a control processor configured to generate a message for transmission on a reverse signaling channel, the message including a Station Class Mark field having a plurality of bits, a portion of the Station Class Mark field indicating that the mobile station is uniquely identified by a Mobile Station Equipment Identifier.
Abstract:
Systems and methods for switching among heterogeneous networks and inter-working between a source access system and a target access system. An inter-system handoff control component can facilitate setting an IP tunneling by the mobile unit, wherein IP addresses for inter-working security gateway and Radio Access Network of the target access system can be identified. The inter-system handoff control component can then implement tunneling between the source system and the target system, wherein signaling/packeting associated with the target system can be transferred over the source system.
Abstract:
In a communication system in which a gateway entity is linked to a plurality of infrastructure entities which in turn are operable to communicate with an access terminal, the access terminal needs first to establish a data attachment point (DAP) with one of the infrastructure entities. Handoff of the DAP from one infrastructure entity to another infrastructure entity is initiated by the access terminal. The access terminal weighs factors such as the link conditions with the various infrastructure entities, the time since the last DAP handoff, and time duration communicating with the current infrastructure entity before proceeding with the DAP handoff.