Abstract:
A shim cushion for a magnetic resonance tomography system includes at least two layers. A first layer of the at least two layers includes both a higher deformability and also a lower susceptibility than a second layer of the at least two layers.
Abstract:
An MR device includes at least one body coil for generating a B1 magnetic field and at least one radiofrequency line routed through the B1 magnetic field. The at least one radiofrequency line has at least one frequency filter for blocking a voltage induced by the B1 magnetic field. At least one section of the radiofrequency line routed through the B1 magnetic field is embodied in printed circuit board technology on at least one printed circuit board, and information-carrying signals may be transmitted over the at least one radiofrequency line on a different frequency than the frequency of the voltage induced by the B1 magnetic field.
Abstract:
A shim coil arrangement for at least one extremity of a patient such as a forearm and/or a hand for use in a magnetic resonance device is provided. The shim coil arrangement is arranged surrounding a receptacle for the at least one extremity. At least two planar shim coils having a common coil plane that lies at right angles to a direction of a basic magnetic field of the magnetic resonance device in a usage state and/or to a longitudinal direction of the receptacle are arranged around a circumference of the receptacle. A plurality of coil planes succeeding one another in the direction of the basic magnetic field of the magnetic resonance device in the usage state and/or the longitudinal direction of the receptacle and at right angles to the direction of the basic magnetic field and/or the longitudinal direction are provided with at least two planar shim coils.
Abstract:
A sheath current for an imaging magnetic resonance tomography system is provided, wherein a coil element of the sheath current filter is embodied to surround a waveguide of the sheath current filter, a local coil connection, and a local coil.
Abstract:
A method for operating a magnetic resonance facility is proposed. The magnetic resonance facility has a number of power-consuming components. The power consumption is determined for each component. Operation of the components is controlled based on at least one criterion so that a predetermined threshold value for the overall power consumption of the magnetic resonance facility is not exceeded.
Abstract:
A magnetic resonance imaging (MRI) system connection for a magnetic resonance imaging system, such as for an MRI local coil and/or patient couch, is provided. The MRI system connection is embodied with devices for a field-coupled transmission of signals.
Abstract:
A magnetic resonance device includes a radiofrequency unit that includes a radiofrequency antenna, at least one radiofrequency line and at least one radiofrequency injection point. Radiofrequency signals are transferred to the radiofrequency antenna by the at least one radiofrequency line and are coupled into the radiofrequency antenna at the at least one radiofrequency injection point. The magnetic resonance device also includes a patient receiving zone that is at least partially enclosed by the radiofrequency antenna, and a motion detection unit for detecting a movement of a patient that may be positioned within the patient receiving zone. At least one radiofrequency line includes at least one injection element by which at least one motion detection signal of the motion detection unit is coupled into the radiofrequency line.
Abstract:
A magnetic resonance imaging apparatus is provided. The apparatus includes a plurality of receiving antennas for receiving a plurality of reception signals. The apparatus also includes at least one first superposition device having at least one first and one second output, which in each case serve for providing a mode formed by superposition of at least two of the reception signals. The apparatus also includes at least one first frequency division multiplex device for transmitting input signal present at a first and a second input of the frequency division multiplex device via a first transmission link on different frequency bands to a receiving unit, wherein the first output of the first superposition device is connected to the first input of the first frequency division multiplex device and the second output of the first superposition device is connected directly or indirectly to a second transmission link.
Abstract:
A local screen screens out magnetic resonance signals of an object under examination during magnetic resonance imaging with a magnetic resonance device. The local screen includes a plurality of electrically conductive local screen elements that are arranged such that no direct electrically conductive connection pertains between the local screen elements. The local screen further includes a carrier device for accommodating the local screen elements and a number of switching devices that are connected in an electrically conductive manner to the local screen element, and are embodied such that the electrical resistance may be controlled by a number of screen control signals. In addition, the local screen includes a number of screen control signal inputs for the number of screen control signals.
Abstract:
A local coil includes a transmitter, to which magnetic resonance signals are supplied and which modulates a carrier signal oscillating at a carrier frequency using the magnetic resonance signals. The local coil includes a transmitting antenna, to which the modulated carrier signal is supplied and which sends the modulated carrier signal in a beam to a control and evaluation device of a magnetic resonance system. The beam has a mean direction of radiation. In a vertical plane containing the mean direction of radiation, the beam covers a vertical angle, and in a transverse plane containing the mean direction of radiation and running orthogonally to the vertical plane, the beam covers a transverse angle. The local coil includes an adjusting device that adjusts the mean direction of radiation independently of the orientation of the local coil relative to the vertical.