Abstract:
A device for recovering a temporal reference in a free-running magnetic resonance tomography (MRT) receive chain includes a time reference encoder and a time reference decoder. The time reference encoder is configured to generate a modulation signal as a function of a reference clock, where the modulation signal is configured for a correlation with a temporal resolution less than a maximum predetermined phase deviation and a maximum that may clearly be identified. The time reference decoder is configured to receive, via the first signal input, a receive signal as a function of the modulation signal, perform a correlation with a reference signal, and generate a signal as a function of a temporal reference of the modulation signal in the receive signal in relation to the reference signal.
Abstract:
A method of determining a decoupling matrix of a decoupling system for an array of coils of a parallel transmission magnetic resonance imaging (MRI) system includes obtaining impedance matrix data for the array of coils without the decoupling system, determining, based on the impedance matrix data for the array of coils, an objective function representative of deviation from a decoupled operating condition for the array of coils in which the array of coils are decoupled via the decoupling system, and defining, with a processor, a decoupling matrix representative of a set of impedances of the decoupling system with an iterative procedure that optimizes elements of the decoupling matrix to minimize the objective function and reach the decoupled operating condition.
Abstract:
A local coil for an MRI system includes a signal antenna to receive a magnetic resonance signal and a tuning/detuning circuit to subject the signal antenna part to switch control according to a control signal. The tuning/detuning circuit is connected to the signal antenna part. The tuning/detuning circuit includes a control signal interface, a resonant circuit and an AC/DC conversion circuit. The control signal interface receives the control signal. The resonant circuit includes a diode. The AC/DC conversion circuit converts an alternating current generated by an electromagnetic wave to a direct current. The AC/DC conversion circuit is connected in series with the diode. A small detuning control current may be used, and detuning control circuitry may be reduced.
Abstract:
A selection unit for a magnetic resonance imaging system may be provided. The selection unit electrically connects a first number of electrical terminals to a second number of communication entities. The selection unit is arranged in and/or on a mobile object-support element for moving an examination object which is to be depicted by the magnetic resonance imaging system into a recording position.
Abstract:
A method and an apparatus for a magnetic resonance imaging system are provided. A type of further processing of signals transmitted by a local coil to a magnetic resonance imaging (MRI) system is determined in dependence on information received in or from the local coil about a local-coil type of the local coil.
Abstract:
A transmitter for pilot tone navigation in a magnetic resonance tomography system includes a power supply and an antenna. The transmitter is configured to transmit a pilot tone signal via the antenna. The transmitter also includes a decoupling element in order to protect a transmitter output from signals that the antenna receives with excitation pulses of the magnetic resonance tomography system during a magnetic resonance tomography. In a method, movement-dependent changes to the pilot tone signal of the transmitter are identified by a controller of the magnetic resonance tomography system.
Abstract:
A local transmit coil for a magnetic resonance tomograph is provided. The local transmit coil includes a signal transmission device for signal transmission to the magnetic resonance tomograph, and a transmission antenna for generating a magnetic excitation field. The local transmit coil further includes an evaluation device for monitoring a function of the local transmit coil. The evaluation device is configured to transmit a status signal relating to the local transmit coil via the signal transmission device.
Abstract:
A transmitting device for driving a high-frequency antenna of a magnetic-resonance device using a target signal capable of being amplitude-modulated is provided. A number N of similarly embodied amplifier modules, where N is at least two, a signal-conditioning device, and a combining device for combining output signals of the amplifier modules into the target signal are provided. The signal-conditioning device generates N drive signals having a predetermined pulse frequency that consist of pulses having a length dependent on a desired target amplitude and having a phase corresponding to the desired target phase and a frequency corresponding to the desired target frequency. The pulses of the individual drive signals are mutually offset in time by, in each case, 1/N of a pulse period corresponding to the pulse frequency. Each drive signal is fed to an amplifier module.
Abstract:
An arrangement for detuning a receive antenna, a detunable magnetic resonance coil, and a magnetic resonance device having a detunable magnetic resonance coil are provided. The arrangement includes a receive antenna having at least one first capacitance, wherein radiofrequency signals from a magnetic resonance examination may be received by way of the receive antenna. The arrangement furthermore includes a switchable detuning circuit containing the first capacitance switched to form an oscillating circuit and a first inductance, and a switching device having a first and a second connection point to deliver a voltage between the first and a second connection point, and one or more transistors. The switching device switches the oscillating circuit to a high impedance level with aid of the one or more transistors on delivery of a positive voltage to the first connection point, preventing a radiofrequency signal from being received by way of the receive antenna.
Abstract:
In order to enable efficient calculation of shim settings for a magnetic resonance imaging system, a method for magnetic resonance imaging of an object under investigation using a magnetic resonance device is provided. The method includes acquiring first magnetic resonance image data of the object under investigation using the magnetic resonance device. The method also includes segmenting the first magnetic resonance image data into at least two material classes, calculating a B0 map based on the segmented first magnetic resonance image data and based on susceptibility values of the at least two material classes, and calculating shim settings based on the calculated B0 map. The method also includes acquiring second magnetic resonance image data of the object under investigation using the magnetic resonance device. The acquisition of the second magnetic resonance image data is undertaken using the calculated shim settings.