Abstract:
Reducing control signaling is an effective technique for increasing resource efficiency when supporting a massive number of connections in an Internet of Things framework. In the presence of sporadic and small data packets, the use of control signaling must be optimized to not overwhelm network resources. In some embodiments, a bit map in a control signaling packet may indicate if certain information elements that correspond to configuration parameters are present or absent. When they are absent, predetermined values for the corresponding configuration parameters may be used, whereas when they are present, predefined values from a set of predefined values may be used. In other embodiments, the predetermined values may be periodically updated.
Abstract:
A quasi-cyclic LDPC coding and decoding method and apparatus, and an LDPC coder and decoder. The method includes: determining from a mother basis matrix set a basis matrix used for low density parity check (LDPC) coding (S202), wherein the basis matrix used for LDPC coding includes a first-type element and a second-type element, the first-type element corresponds to an all-zero square matrix, the second-type element corresponds to a matrix obtained by means of a cyclic shift of a unit matrix according to a value of the second-type element, and dimensions of the all-zero square matrix and the unit matrix are equal; and performing LDPC coding on an information sequence to be coded according to the basis matrix used for LDPC coding, and/or performing LDPC decoding on a data sequence to be decoded according to the basis matrix used for LDPC coding (S204).
Abstract:
A data processing method and apparatus. The data process method includes: determining, by a transmitting node, a code block length N0 for encoding an information bit sequence to be transmitted according to a data characteristic for representing the information bit sequence to be transmitted and a preset parameter corresponding to the data characteristic; performing, by the transmitting node, polar encoding on the information bit sequence to be transmitted according to the code block length N0; and transmitting, by the transmitting node, a code block obtained through the polar encoding to a receiving node.
Abstract:
A system and method for polar code coding with information bits placed in particular bit indexes are disclosed herein. In one embodiment, a method for channel coding includes: associating, by a polar code encoder, a first bit sequence with first bit indexes of a polar code input; associating, by the polar code encoder, a second bit sequence with second bit indexes, wherein the first bit indexes have a higher reliability than the second bit indexes; and encoding, by the polar code encoder, both the first bit sequence and the second bit sequence using a generator matrix to generate encoded bits.
Abstract:
The present disclosure provides a method and an apparatus for receiving Channel Quality Indication (CQI) information, as well as a method and an apparatus for transmitting CQI information. The method for receiving CQI information includes: transmitting a higher layer configuration signaling message to a terminal; and receiving CQI information from the terminal. The CQI information is determined based on a CQI table obtained based on the higher layer configuration signaling message. With the above solutions, higher data transmission reliability and lower data transmission rate required for MTC terminals with coverage enhancement and 5G terminals can be achieved.
Abstract:
Provided is a data processing method and apparatus. The method includes: performing an inverse fast Fourier transform (IFFT) on data and processing the data with a preset function. The preset function is the product of a first function and a second function. The first function is a function in a time domain obtained by performing a Fourier transform on a root-raised cosine function in a frequency domain. The second function is in the time domain.
Abstract:
An encoding method, decoding method, encoding device and decoding device for structured LDPC codes. The method includes: determining a basic matrix used for encoding, which includes K0 up-and-down adjacent pairs; and according to the basic matrix and an expansion factor corresponding to the basic matrix, performing an LDPC encoding operation of obtaining a codeword of Nb×z bits according to source data of (Nb−Mb)×z bits, herein z is the expansion factor, and z is a positive integer which is greater than or equal to 1. The provided technical solution is applicable to the encoding and decoding of the structured LDPC, thereby realizing the encoding and decoding of LDPC at the high pipeline speed.
Abstract:
Disclosed are a method for transferring control information, a transmitting device and a receiving device, the method includes that: a transmitting end orderly selects an element yn or two elements y2m−1, y2m, from a sequence Y to be modulated corresponding to control information B newly added, then it selects pairing elements x2p−1, x2p from a sequence X to be modulated corresponding to related control information A, and groups yn or y2m−1, y2m and the x2p−1, x2p into an element group (x2p−1, x2p, yn) or (x2p−1, x2p, y2m−1, y2m) and maps (x2p−1, x2p, yn) or (x2p−1, x2p, y2m−1, y2m) as specified constellation points of a specified constellation diagram, and takes the constellation points as modulation symbols; it takes each two elements in the elements of the sequence X which are not used for pairing as an element group to perform QPSK modulation, modulating into QPSK modulation symbols; and it maps the constellation points and the QPSK modulation symbols to part of or all resources occupied by a corresponding control channel to be transmitted.
Abstract:
The disclosure discloses a method for supporting low bit rate coding. A source data packet to be coded is repeated for i times, and the data packet which is repeated for i times is coded. The disclosure also discloses an apparatus for supporting low bit rate coding and a computer storage medium.
Abstract:
A control signaling transmission method, a control signaling detection method, a terminal, and a base station are provided. The transmission method includes: a base station determining an enhanced Physical Downlink Control Channel (ePDCCH) resource region of the terminal in a current subframe according to at least one of multiple parameters, and transmitting control signaling to the terminal on some or all of the resources in the ePDCCH resource region. The above technical scheme can adapt to the dynamically-changing transmission capabilities of subframes, improves the transmission performance of the control signaling on an ePDCCH, increases the accuracy of the terminal in searching for the control signaling, and conserves terminal consumption. Therefore, the present document has a great industrial applicability.