Abstract:
An ozone generation cell operating by corona discharge in an annular passage with regions of corona discharge alternating with corona-free regions where cooling takes place is improved by the incorporation of corrugated, deformable heat transfer walls in the corona-free regions. These corrugated walls impart flexibility to the structure, and thereby relieve the strain on the structural components. This permits the heat transfer wall, which is the outer of the two cylinders defining the annular passage, to center the inner of the two cylinders inside it and thus achieve a more uniform gap width in the corona regions. This is of value since the inner cylinder is preferably made of a ceramic material and not perfectly straight. The corrugations also promote turbulent flow in both the coolant medium and the gas mixture in which the ozone is generated.
Abstract:
An ozone generator for producing ozone at pressures of up to 10,000 psi from oxygen or oxygen containing gas, which contains two electrodes for forming a corona discharge through the input gas, the first electrode being cooled by a first cooling fluid and the second electrode being cooled by a second cooling fluid, which further contains flexible barrier means for equalizing the pressure between the cooling fluids and the input gas.
Abstract:
In an ozone generator with enamel dielectric, to increase the ozone yield, the latter is built up on at least two enamel layers, the layer (4) facing the discharge space (5) having a smaller dielectric constant (.ltoreq.6) than the layer (3) lying underneath.
Abstract:
An electrode for an ozone generator of the type having a high tension electrode and a grounded electrode mounted in a spaced relation, one of the electrodes having a dielectric member applied to or mounted on one of the surfaces of the electrode, the dielectric member, including a layer of resilient dielectric material having a coating of particles of an inorganic material either sprinkled on or embedded in the surface of said dielectric material facing the other electrode.
Abstract:
An ozone generator is formed by a plurality of concentric tubular plate members forming positive and negative electrodes which are interleaved with each other. A high voltage discharge is applied from a transformer between the electrodes to cause an electric discharge in the air contained therebetween, thereby generating a supply of ozone. The air is fed to a suction nozzle device through which a water stream to be purified passes. The suction nozzle is constructed so that the water stream is markedly speeded up so as to generate a partial vacuum in an air pocket formed between the water stream and the inner walls of the nozzle. The ozone, which is fed to the nozzle in the region where this air pocket is formed, is thus sucked into the nozzle and efficiently injected into the water stream, thereby effecting the purifying action.
Abstract:
A method and apparatus for generating high concentrations of ozone using a solid state high voltage power supply and a specially designed ozonator. The power supply comprises a rectifier and voltage doubler to which commercial AC line current is applied to produce a 300 volt DC output which, in turn, is applied across a solid state switching device to chop the DC output at an adjustable high frequency rate. The switch means is controlled by a timing and trigger circuit and the output of the switch means is applied to the input of an auto-transformer of the automotive ignition coil type which raises the high frequency output of the switch to a very high voltage level in the range of 30,000 to 50,000 volts peak to peak. This is applied to the high voltage electrode of each cell of a concentric electrode type ozone generator. The heat limiting problems encountered in the prior art are ameliorated both by elimination of iron core transformers or choke coils and by utilizing a counter-flow gas feed principle in the ozonator to cool the inner high voltage electrode by the incoming air or oxygen flow before it is passed through the corona discharge gap. This counter flow is achieved by passing the feed gas through the inside of the hollow inner electrode before entering the gap. The AC field of the inner core thus also deionizes the gas before it is passed through the corona discharge thereby achieving further energy savings. Power consumption in the power supply may be further reduced by using a single limiting impedance to drive a plurality of similar output channels, each of which is connected to its corresponding ozonator generator in a manner such as to achieve maximum power transfer. The combined effect of these features is to minimize electrical power consumption per pound of production of ozone.
Abstract:
High frequency tubular ozonizer in which one common housing contains several ozonizing elements, each of these elements having a high voltage and a low voltage electrode, both embodied in the form of coaxially disposed pipes coated with a dielectric material on the side of the reaction zone and provided with a circulation cooling liquid. Cooling efficiency is increased by providing a core fitted in the expanded portion of each of the high voltage electrodes, whereas each low voltage electrode is made of two coaxially arranged pipes with the cooling liquid circulating between the pipes. The ends of the high voltage tubular electrodes of the ozonizing elements are secured in the walls of manifolds which serve as admitting and discharging conduits for the cooling liquid. The ozonizer of the invention exhibits increased output of 50-100 times and when so constructed drastically reduces capital investment.
Abstract:
An ozone generator apparatus and method of making same having inner and outer tubes connected together with spacers therebetween leaving air space between the tubes. The smaller tube has a copper rod attached along its axis and is filled with a brine solution and the larger tube is either metal or has a metallic coating with a voltage source connected between the larger tube and the copper rod. Air is forced and directed between the larger and smaller tubes where ozone is generated.