Aluminum cylinder block and method of manufacture

    公开(公告)号:US10690087B2

    公开(公告)日:2020-06-23

    申请号:US16136705

    申请日:2018-09-20

    Inventor: Qigui Wang

    Abstract: A cast cylinder block for an internal combustion engine includes a first and a second cylinder bore and a shared bore wall. The first cylinder bore includes a first bore wall and the second cylinder bore includes a second bore wall. The shared cylinder bore wall includes a first portion and a second portion. A portion of the first bore wall combines with a portion of the second bore wall to form the shared cylinder bore wall. The first portion of the shared bore wall is an as-cast portion. The second portion of the shared bore wall is a metal matrix composite.

    AS-CAST HIGH STRENGTH NODULAR IRON WITH FAVORABLE MACHINABILITY

    公开(公告)号:US20200095655A1

    公开(公告)日:2020-03-26

    申请号:US16136445

    申请日:2018-09-20

    Abstract: A nodular iron alloy and automotive components, such as crankshafts, are provided. The nodular iron alloy may include iron, about 3.3-3.9 wt % carbon, about 0.2-0.5 wt % manganese, about 1.9-2.6 wt % silicon, about 0.15-0.30 wt % copper, about 0.03-0.06 wt % magnesium, about 0-0.02 wt % sulfur, about 0-0.1 wt % chromium, about 0-0.05 wt % phosphorus, and/or about 0-0.01 wt % tin. The nodular iron alloy may include a number of graphite nodules, each having a diameter between 15 and 120 micrometers, and the graphite nodules having a number density of at least 90 per square millimeter. Iron may surround the graphite nodules in an amount of 20-40% of a ferrite microstructure and 60-80% of a pearlite microstructure. The nodular iron alloy may have an ultimate tensile strength in the range of 550 MPa to 680 MPa as-cast and at least 80% nodularity.

    HIGH TEMPERATURE CAST ALUMINUM ALLOY FOR CYLINDER HEADS

    公开(公告)号:US20190169716A1

    公开(公告)日:2019-06-06

    申请号:US15828827

    申请日:2017-12-01

    Abstract: Aluminum alloys having improved high temperature mechanical properties are provided. An aluminum alloy suitable for sand casting, permanent mold casting, or semi-permanent mold casting includes about 3 to about 12 weight percent silicon; about 0.5 to about 2.0 weight percent copper; about 0.2 to about 0.6 weight percent magnesium; about 0 to about 0.5 weight percent chromium; about 0 to about 0.3 weight percent each of zirconium, vanadium, cobalt, and barium; about 0 to about 0.3 weight percent each of strontium, sodium, and titanium; about 0 to about 0.5 weight percent each of iron manganese, and zinc; and about 0.0.1 weight percent of other trace elements. Also disclosed is a semi permanent mold cast article, such as an engine cylinder head.

    HIGH-STRENGTH BAINITIC STEEL
    177.
    发明申请

    公开(公告)号:US20190161838A1

    公开(公告)日:2019-05-30

    申请号:US15824704

    申请日:2017-11-28

    Abstract: A high-strength steel alloy and automotive components produced therefrom, as well as a method for forming a steel alloy, are provided. The high-strength steel alloy includes iron, about 0.24 to about 0.80 weight percent carbon, about 0.40 to about 2.10 weight percent manganese, about 0.20 to about 1.60 weight percent silicon, about 0.05 to about 0.14 weight percent sulfur; about 0.10 to about 12.0 weight percent chromium, about 0.10 to about 2.50 weight percent nickel, and about 0.02 to about 0.07 weight percent aluminum. The steel alloy may also include boron, molybdenum, titanium, niobium, and/or nitrogen. The method includes air quenching a steel alloy component after mold shakeout until the component reaches a temperature in the range of 420 to 530 degrees Celsius.

    SECONDARY CAST ALUMINUM ALLOY FOR STRUCTURAL APPLICATIONS

    公开(公告)号:US20190039125A1

    公开(公告)日:2019-02-07

    申请号:US16154129

    申请日:2018-10-08

    Abstract: An aluminum alloy that can be cast into structural components wherein at least some of the raw materials used to produce the alloy are sourced from secondary production sources. In addition to aluminum as the primary constituent, such an alloy includes 5 to 14% silicon, 0 to 1.5% copper, 0.2 to 0.55% magnesium, 0.2 to 1.2% iron, 0.1 to 0.6% manganese, 0 to 0.5% nickel, 0 to 0.8% zinc, 0 to 0.2% of other trace elements selected from the group consisting essentially of titanium, zirconium, vanadium, molybdenum and cobalt. In a preferred form, most of the aluminum is from a secondary production source. Methods of analyzing a secondary production aluminum alloy to determine its constituent makeup is also disclosed, as is a method of adjusting the constituent makeup of such an alloy in situations where the alloy is out of tolerance when measured against its primary source counterpart.

    BEARING WITH LIGHTWEIGHT BACKING SUBSTRATE
    179.
    发明申请

    公开(公告)号:US20190024708A1

    公开(公告)日:2019-01-24

    申请号:US15655002

    申请日:2017-07-20

    Abstract: A bearing shell for an automotive propulsion system is provided, along with a crankshaft assembly and an engine having a bearing shell. The bearing shell comprises an inner layer having an inner layer thickness. The inner layer defines a bearing surface on an inner side. The bearing surface of the inner layer is configured to support and contact an oil film. The bearing shell also has an outer layer disposed around the inner layer and radially outward of the inner layer. The outer layer has an outer layer thickness that is greater than the inner layer thickness, the outer layer thickness being at least one millimeter. The outer layer is formed of an outer layer material comprising an aluminum alloy and/or a metal matrix composite material. The inner layer is formed of an inner layer material, wherein the outer layer material is stronger than the inner layer material.

Patent Agency Ranking